N. Haddad, J. Baron / Tetrahedron Letters 43 (2002) 2171–2173
2173
Scheme 4.
In summary, variety of pyrazoles and pyrazolones
could be prepared, under the developed conditions,
from easily accessible aryl and heteroaryl benzophe-
none hydrazones with different 1,3-bifunctional groups.
4. (a) Wagaw, S.; Yang, H. B.; Buchwald, S. L. J. Am. Chem.
Soc. 1998, 120, 6621; (b) Hartwig, J. F. Angew. Chem., Int.
Ed. 1998, 37, 2090.
5. All new compounds were characterized by full spectro-
scopic data, yields refer to chromatographed materials
with purity of >95%. Structure of 7 found in agreement
with previously reported data: Texier-Boullet, F.; Klein,
B.; Hamelin, J. Synthesis 1986, 409.
Acknowledgements
We gratefully acknowledge Dr. Vittorio Farina and Dr.
Kevin Webb for valuable discussions. We also thank
Dr. Paul-James Jones for assistance with the 2D-NMR
spectroscopic measurements.
6. Typical procedure:
Solution of the benzophenone hydrazone (1.75 mmol),
p-TsOH (or conc. HCl) (8.75 mmol) and the bi-functional
substrate (2.63 mmol) in EtOH (10 mL) was refluxed for a
period of 8–16 h. The reaction mixture was cooled to rt,
then NaHCO3 saturated solution (10 mL) and EtOAc (10
mL) were added. The layers were separated, and the
aqueous layer washed with EtOAc. The combined organics
dried (Na2SO4), concentrated then purified by column
chromatography.
References
1. (a) Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P.;
Gilmore, G.; Graham, A. G.; Grob, P. A.; Hickey, E. R.;
Moss, N.; Pav, S.; Regan, J. Nature Struct. Biol., in press;
(b) Dumas, J.; Hatoum-Mokdad, H.; Sibley, R.; Riedl, B.;
Scott, W. J.; Monahan, M. K.; Lowinger, T. B.; Brennan,
C.; Natero, R.; Turner, T.; Johnson, J.; Schoenleber, R.;
Bhargava, A.; Wilhelm, S. W.; Housley, T. J.; Gerald, E.
R.; Shrikhande, A. Bioorg. Med. Chem. Lett. 2000, 10,
2051; (c) Menozzi, G.; Mosti, L.; Schenone, P.; Donnoli,
D.; Schiariti, F.; Marmo, E. Farmaco 1990, 45, 167.
2. On the synthesis of pyrazoles and pyrazole related struc-
tures see: (a) Makino, K.; Kim, H. S.; Kurasawa, Y. J.
Heterocyclic Chem. 1998, 35, 489; (b) Elguero, J. Compr.
Heterocyclic Chem. II 1996, 3, 1; (c) Takagi, K.; Huber-
Habart, M. J. Heterocyclic Chem. 1996, 33, 1003; (d)
El-Rayyes, N. R.; Al-Awadi, N. A. Synthesis 1985, 1028;
(e) Sammes, M. P.; Katritzky, A. R. Advances in Hetero-
cyclic Chemistry, Vol. 34, Academic Press, 1983; (g) Behr,
L. C.; Fusco, R.; Jarboe, C. H. The Chemistry of Hetero-
cyclic Compounds; Weissberger, A., Ed., Interscience Pub-
lishers: John Wiley and Sons, 1967.
1
7. Selected H NMR data from 14: l 5.47 (1H, s), 4.12 (2H,
q), 2.28 (3H, s), 1.43 (3H, t) (in full agreement with
reported data: Katritzky, A. R.; Main, F. W. Tetrahedron
1964, 20, 299). Compound 15: l 5.44 (1H, s), 4.07 (2H, q),
2.26 (3H, s), 1.33 (3H, t).
1
8. Selected H NMR data from 17: l 4.35 (2H, q), 3.48 (1H,
s) (in full agreement with literature; Molinari, A.; Oliva, A.
J. Heterocyclic Chem. 1996, 33, 479.)
9. NOESY experiments indicate NOE between the aryl-rings
and the t-butyl substituents and absence of NOE with the
methyl substituent on the pyrazole rings in structures 25
and 26. These results are consistent with the expected
regioselectivity.
3. For palladium-catalyzed coupling of t-butylcarbazate with
activated aryl bromides, see: Wang, Z.; Skerlj, R. T.;
Bridger, G. J. Tetrahedron Lett. 1999, 40, 3543.