LETTER
Enantioselective Synthesis of a Tetrasubstituted Oxocane
119
(4) (a) Danishefsky, S. J.; Kobayashi, S.; Kerwin, J. F., Jr. J. Org.
Chem. 1982, 47, 1981-1983. (b) Danishefsky, S. J.; Pearson,
W. H.; Harvey, D. F.; Maring, C. J.; Springer, J. P. J. Am.
Chem. Soc. 1985, 107, 1256-1268.
Cram approach to the aldehyde and unlike approach to the
diene. It was not possible, however, to determine the ste-
reochemistry at the carbon atom bearing the sulfone group
due probably to the conformational flexibility of that part
of the molecule.
(5) (a) McDougal, P. G.; Rico, J. G.; VanDerveer, D. J. Org.
Chem. 1986, 51, 4492-4494. (b) Kozikowski, A. P.; Nieduzak,
T. R.; Konoike, T.; Springer, J. P. J. Am. Chem. Soc. 1987,
109, 5167-5175. (c) Barluenga, J.; González, F. J.; Fustero, S.;
García-Granda, S.; Pérez-Carreño, E. J. Org. Chem. 1991, 56,
4459-4463. (d) Bloch, R.; Chaptal-Gradoz, N. J. Org. Chem.
1994, 59, 4162-4169. (e) Adam, W.; Gläser, J.; Peters, K.;
Prein, M. J. Am. Chem. Soc. 1995, 117, 9190-9193.
(6) We follow Franck’s lead in utilizing this nomenclature; see:
Tripathy, R.; Franck, R. W.; Onan, K. D. J. Am. Chem. Soc.
1988, 110, 3257-3262.
TBDPSO
TBDPSO
HO
SO2pTol
SO2pTol
d, e
H
O
H
O
MOMO
HO
a, b, c
9
H
H
MeO2C
O
O
11
O
10
O
(7) Hu, Y-J.; Huang, X-D.; Yao, Z-J.; Wu, Y-L. J. Org. Chem.
1998, 63, 2456-2461.
f, g, h, i
(8) (a) Houk, K. N.; Moses, S. R.; Wu, Y-D.; Rondan, N. G.;
Jäger, V.; Schohe, R.; Fronczek, F. R. J. Am. Chem. Soc. 1984,
106, 3880-3882. (b) Kahn, S. D.; Hehre, W. J. Tetrahedron
Lett. 1985, 26, 3647-3650. (c) Kaila, N.; Franck, R. W.;
Dannenberg, J. J. J. Org. Chem. 1989, 54, 4206-4212.
(9) McCarrick, M. A.; Wu, Y-D.; Houk, K. N. J. Org. Chem.
1993, 58, 3330-3343.
SO2pTol
5
TBDPSO
MOMO
SO2pTol
TBDPSO
H
OH
H
j
3
H
7
O
H
8
2
O
OPiv
MOMO
H
PivO
H
O
(10) Katsuki, T.; Martín, V. S. In Organic Reactions; Paquette, L.
A.; et al. Eds.; Wiley: New York, 1996; Vol. 48, pp 1-299.
(11) The optical purities were determined by NMR spectroscopy of
the Mosher’s ester.
(12) (a) Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1557-
1560. (b) Palazón, J. M.; Añorbe, B.; Martín, V. S.
Tetrahedron Lett. 1986, 27, 4987-4990.
12
13
a) O3, CH2Cl2, MeOH; b) NaBH4; c) CH2N2, Et2O (87% three steps);
d) MOMCl, Pr2NEt, 0ºC to r.t. (98%); e) DIBALH, Et2O, -60ºC
(94%); f) (CH3)3COCl, Py, 0ºC to r.t. (98%); g) CSA, MeOH, 0ºC to
r.t. (84%); h) TsCl, DMAP, Et3N, CH2Cl2; i) NaH, THF (85%, two
steps); j) LDA, THF, -65ºC (71%).
i
Scheme 4
(13) Procedure for the cyclization reaction: To a solution of 22 mg
(0.03 mmol) of 12 in 6 mL of THF at -65 ºC, were added
0.5 ml of a solution of LDA (0.24 M, 4 equiv.) in THF. When
no further progress was observed by TLC (15 min), 1 mL of
saturated aqueous solution of NH4Cl was added and the
reaction was allowed to reach room temperature. After
extraction with ether, concentration and flash column
chromatography (25% EtOAc in hexanes), 15.6 mg of 13 were
obtained as a clear oil (71% yield). Data for 13: 1H NMR
(400 MHz, CDCl3) d 1.06 (s, 9H, tBu), 1.17 (s, 9H, tBu), 1.65-
1.72 (m, 1H, -CH2-CH2OPiv), 1.82-1.94 (m, 2H, -CH2-
CH2OPiv, H6), 2.12 (dd, 1H, J = 8.4, 14.6 Hz, H4), 2.39-2.52
(m, 2H, H4’, H6’), 2.44 (s, 3H, CH3-ArSO2-), 2.95 (dd, 1H,
J = 6.7, 10.3 Hz, -CH2-OMOM), 3.01 (dd, 1H, J = 4.3, 10.3
Hz, -CH2-OMOM), 3.10 (s, 3H, CH3-O-), 3.52-3.55 (m, 1H,
H8), 3.68-3.72 (m, 1H, H2), 3.76-3.81 (m, 1H, H5), 3.88 (t,
1H, J = 5.9 Hz, H3), 4.02 (dd, 1H, J = 2.7, 2.7 Hz, H7), 4.08-
4.12 (m, 2H, -CH2OPiv), 4.28 (s, 2H, O-CH2-O), 7.28-7.70
(m, 14H, Ar). 13C NMR (100 MHz, CDCl3) d 19.1 (s), 21.5 (q,
CH3Ar), 26.9 (q, tBu), 27.1 (q, tBu), 29.9 (t, C6), 32.2 (t, C4),
33.2 (t, CH2CH2OPiv), 38.6 (s), 55.0 (q, CH3-O), 55.3 (d, C5),
61.1 (t, -CH2OPiv), 68.6 (t, CH2-OMOM), 72.3 (d, C3), 72.5
(d, C7), 80.7 (d, C2), 82.7 (d, C8), 96.2 (t, O-CH2-O), 127.8
(d, Ar), 129.7 (d, Ar), 130.0 (d, Ar), 130.1 (d, Ar), 132.1 (s,
Ar), 132.5 (s, Ar), 134.6 (s, Ar), 135.8 (d, Ar), 144.4 (s Ar),
178.5 (s, C=O).
The work reported herein demonstrates that medium sized
tetrasubstituted cyclic ethers can be prepared in enantio-
merically pure form through the synthetic scheme pro-
posed, making use of the double diastereoselective Diels-
Alder reaction. The opposite absolute stereochemistry can
be achieved by the use of the easily obtained enantiomers
of the aldehyde and diene. This work also presents new
evidence on the tendency of dienes bearing an allylic
chiral centre to react with aldehydes in an unlike manner.
Acknowledgement
Financial support of this work by the Ministerio de Educación y
Cultura (grant PB96-1041) and FEDER (1FD97-0747-C04-01) is
gratefully acknowledged.
References and Notes
(1) Faulkner, D. J. Nat. Prod. Rep. 1999, 16, 155-198. Faulkner,
D. J. Nat. Prod. Rep. 1998, 15, 113-158. Faulkner, D. J. Nat.
Prod. Rep. 1997, 14, 259-302. Faulkner, D. J. Nat. Prod. Rep.
1996, 13, 75-125 and previous reviews in this series.
(2) Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897-1909.
(3) (a) Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J.
A. Synlett 1996, 983-984. (b) Mujica, M. T.; Afonso, M. M.;
Galindo, A.; Palenzuela, J. A. J. Org. Chem. 1998, 63, 9728-
9738.
Article Identifier:
1437-2096,E;2001,0,01,0117,0119,ftx,en;L16200ST.pdf
Synlett 2001, No. 1, 117–119 ISSN 0936-5214 © Thieme Stuttgart · New York