10.1002/anie.201907572
Angewandte Chemie International Edition
COMMUNICATION
X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang, Y. Zhao, Sci.
Adv. 2018, 4, eaas9732.
34CPhCz was UOP and TADF dual-emissive with a moderately
decreased phosphorescence lifetime of 770 ms and a Phos of
3.4%. However, the too weak coupling between triplet
chromophores but strong coupling between benzene units
resulted in the disappearance of UOP and only TADF emission
with a luminescent lifetime of 2.7 μs for 35CPhCz. These results
demonstrate it is the triplet chromophores stacking that really
plays a critical role in UOP generation. Our viewpoint can provide
some deeper understanding for the inherent mechanism of
ultralong phosphorescence emission in purely organic
compounds and new guideline for obtaining UOP materials.
[5]
a) Y. Gong, G. Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z.
Tang, Adv. Mater. 2015, 27, 6195-6201; b) L. Bian, H. Shi, X. Wang, K.
Ling, H. Ma, M. Li, Z. Cheng, C. Ma, S. Cai, Q. Wu, N. Gan, X. Xu, Z. An,
W. Huang, J. Am. Chem. Soc. 2018, 140, 10734-10739; c) Y. Liu, G.
Zhan, P. Fang, Z. Liu, Z. Bian, C. Huang, J. Mater. Chem. C 2017, 5,
12547-12552. d) S. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang,
W. W. Xiong, L. Li, Z. An, W. Huang, Adv. Mater. 2017, 29, 1701244.
Y. Gong, L. Zhao, Q. Peng, D. Fan, W. Z. Yuan, Y. Zhang, B. Z. Tang,
Chem. Sci. 2015, 6, 4438-4444.
[6]
[7]
a) Z. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu,
Z. Chi, J. Xu, Y. C. Wu, P. Y. Lu, A. Lien, M. R. Bryce, Angew. Chem. Int.
Ed. 2016, 55, 2181-2185; b) Z. Chai, C. Wang, J. Wang, F. Liu, Y. Xie,
Y. Z. Zhang, J. R. Li, Q. Li, Z. Li, Chem. Sci. 2017, 8, 8336-8344.
a) Y. Xie, Y. Ge, Q. Peng, C. Li, Q. Li, Z. Li, Adv. Mater. 2017, 29,
1606829; b) J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie,
J. Li, Q. Peng, K. Pu, Z. Li, Nat. Commun. 2018, 9, 840; c) S. Tian, H.
Ma, X. Wang, A. Lv, H. Shi, Y. Geng, J. Li, F. Liang, Z. Su, Z. An, W.
Huang, Angew. Chem. Int. Ed. 2019, 58, 6645 –6649.
Acknowledgements
[8]
This work is supported by the National Natural Science
Foundation of China (21875104, 51673095, 91833304 and
91833302), National Basic Research Program of China (973
Program, No. 2015CB932200), Natural Science Fund for
Distinguished Young Scholars of Jiangsu Province (BK20180037).
We are grateful to the High Performance Computing Center of
Nanjing Tech University for supporting the computational
resources.
[9]
a) J. Yang, Z. Ren, B. Chen, M. Fang, Z. Zhao, B. Z. Tang, Q. Peng, Z.
Li, J. Mater. Chem. C 2017, 5, 9242-9246; b) H. Wu, W. Chi, G.
Baryshnikov, B. Wu, Y. Gong, D. Zheng, X. Li, Y. Zhao, X. Liu, H. Ågren,
L. Zhu, Angew. Chem. Int. Ed. 2019, 58, 4328-4333.
[10] H. Wu, C. Hang, X. Li, L. Yin, M. Zhu, J. Zhang, Y. Zhou, H. Agren, Q.
Zhang, L. Zhu, Chem. Commun. 2017, 53, 2661-2664.
[11] a) L. Gu, H. Shi, M. Gu, K. Ling, H. Ma, S. Cai, L. Song, C. Ma, H. Li, G.
Xing, X. Hang, J. Li, Y. Gao, W. Yao, Z. Shuai, Z. An, X. Liu, W. Huang,
Angew. Chem. Int. Ed. 2018, 57, 8425-8431; b) J. A. Li, J. Zhou, Z. Mao,
Z. Xie, Z. Yang, B. Xu, C. Liu, X. Chen, D. Ren, H. Pan, G. Shi, Y. Zhang,
Z. Chi, Angew. Chem. Int. Ed. 2018, 57, 6449-6453; c) Y. Mu, Z. Yang,
J. Chen, Z. Yang, W. Li, X. Tan, Z. Mao, T. Yu, J. Zhao, S. Zheng, S. Liu,
Y. Zhang, Z. Chi, J. Xu, M. P. Aldred, Chem. Sc.i 2018, 9, 3782-3787.
[12] a) W.-C. Liao, W.-H. Chen, C.-H. Chen, T.-S. Lim, T.-Y. Luh,
Macromolecules 2013, 46, 1305-1311; b) S. Zhang, L. Yao, Q. Peng, W.
Li, Y. Pan, R. Xiao, Y. Gao, C. Gu, Z. Wang, P. Lu, F. Li, S. Su, B. Yang,
Y. Ma, Adv. Funct. Mater. 2015, 25, 1755-1762; c) F. B. Dias, J. Santos,
D. R. Graves, P. Data, R. S. Nobuyasu, M. A. Fox, A. S. Batsanov, T.
Palmeira, M. N. Berberan-Santos, M. R. Bryce, A. P. Monkman, Adv. Sci.
2016, 3, 1600080.
Keywords: crystal engineering • triplet chromophore stacking •
ultralong organic phosphorescence • intermolecular Interactions
• thermally activated delayed fluorescence
[1]
a) S. Xu, R. Chen, C. Zheng, W. Huang, Adv. Mater. 2016, 28, 9920-
9940; b) Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H.
Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685-690; c) Y. Shoji,
Y. Ikabata, Q. Wang, D. Nemoto, A. Sakamoto, N. Tanaka, J. Seino, H.
Nakai, T. Fukushima, J. Am. Chem. Soc. 2017, 139, 2728-2733; d) W.
Zhao, T. S. Cheung, N. Jiang, W. Huang, J. W. Y. Lam, X. Zhang, Z. He,
B. Z. Tang, Nat. Commun. 2019, 10, 1595; e) L. Gu, H. Shi, L. Bian, M.
Gu, K. Ling, X. Wang, H. Ma, S. Cai, W. Ning, L. Fu, H. Wang, S. Wang,
Y. Gao, W. Yao, F. Huo, Y. Tao, Z. An, X. Liu, W. Huang, Nat. Photonic
2019, 13, 406-411.
[13] a) H. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew. Chem.
Int. Ed. 2017, 56, 254-259; b) H. Qian, M. E. Cousins, E. H. Horak, A.
Wakefield, M. D. Liptak, I. Aprahamian, Nat. Chem. 2017, 9, 83-87; c) M.
K. Etherington, F. Franchello, J. Gibson, T. Northey, J. Santos, J. S.
Ward, H. F. Higginbotham, P. Data, A. Kurowska, P. L. Dos Santos, D.
R. Graves, A. S. Batsanov, F. B. Dias, M. R. Bryce, T. J. Penfold, A. P.
Monkman, Nat. Commun. 2017, 8, 14987.
[2]
a) Z. Cheng, H. Shi, H. Ma, L. Bian, Q. Wu, L. Gu, S. Cai, X. Wang, W.
W. Xiong, Z. An, W. Huang, Angew. Chem. Int. Ed. 2018, 57, 678-682;
b) Y. Yu, M. S. Kwon, J. Jung, Y. Zeng, M. Kim, K. Chung, J. Gierschner,
J. H. Youk, S. M. Borisov, J. Kim, Angew. Chem. Int. Ed. 2017, 56,
16207-16211; c) R. Kabe, N. Notsuka, K. Yoshida, C. Adachi, Adv. Mater.
2016, 28, 655-660; d) X. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen,
W. Huang, K. Pu, Adv. Mater. 2017, 29, 1606665; e) G. Zhang, G. M.
Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747-751; f) K.
Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2016,
55, 7231-7235.
[14] F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V.
Bhalla, J. Santos, M. R. Bryce, A. P. Monkman, Adv. Mater. 2013, 25,
3707-3714.
[15] a) L. Yu, Z. Wu, C. Zhong, G. Xie, Z. Zhu, D. Ma, C. Yang, Adv. Optical
Mater. 2017, 5, 1700588; b) X. Cai, X. Li, G. Xie, Z. He, K. Gao, K. Liu,
D. Chen, Y. Cao, S.-J. Su, Chem. Sci. 2016, 7, 4264-4275.
[3]
[4]
a) N. Gan, H. Shi, Z. An, W. Huang, Adv. Funct. Mater. 2018, 28,
1802657; b) M. Baroncini, G. Bergamini, P. Ceroni, Chem. Commun.
2017, 53, 2081-2093; c) S. Hirata, Adv. Optical Mater. 2017, 5, 1700116;
d) Q. Li, Y. Tang, W. Hu, Z. Li, Small 2018, 14, 1801560.
[16] J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki,
C. Adachi, Adv. Mater. 2013, 25, 3319-3323.
[17] C. Sun, X. Ran, X. Wang, Z. Cheng, Q. Wu, S. Cai, L. Gu, N. Gan, H.
Shi, Z. An, H. Shi, W. Huang, J. Phys. Chem. Lett. 2018, 9, 335−339.
a) X. Ma, C. Xu, J. Wang, H. Tian, Angew. Chem. Int. Ed. 2018, 57,
10854-10858; b) T. Ogoshi, H. Tsuchida, T. Kakuta, T.-a. Yamagishi, A.
Taema, T. Ono, M. Sugimoto, M. Mizuno, Adv. Funct. Mater. 2018, 28,
1707369; c) M. S. Kwon, Y. Yu, C. Coburn, A. W. Phillips, K. Chung, A.
Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J.
Gierschner, J. Kim, Nat. Commun. 2015, 6, 8947; d) S. Hirata, K. Totani,
J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe, C. Adachi,
Adv. Funct. Mater. 2013, 23, 3386-3397; e) Y. Su, S. Z. F. Phua, Y. Li,
This article is protected by copyright. All rights reserved.