404 Letters in Organic Chemistry, 2010, Vol. 7, No. 5
Goswami and Jana
(g) Gale, P.A. Structural and molecular recognition studies with
acyclic anion receptors. Acc. Chem. Res., 2006, 39, 465-475. (h)
Vickers, M.S.; Beer P.D. Anion templated assembly of
mechanically interlocked structures. Chem. Soc. Rev., 2007, 36,
211-225.
(a) Stadler-Szoke, A.; Szejtli, J. A nitroglicerin beta-ciklodextrin
zárványkomplex. Acta Pharm. Hung., 1979, 49, 30-34. (b) Szejtli,
J.; Gerloczy, A.; Szente, L.; Banky-Elod, E.; Sebestyen, G.;
Fonagy, A.; Kurcz, M. Farmakonok felszívódásának fokozása
ciklodextrin zárványkomplex képzéssel. Acta Pharm. Hung., 1979,
49, 207-221.
Anal. Calcd for C47H32N4O2; C, 82.43; H, 4.71; N 8.18.
Found: C, 82.37; H, 4.75; N 8.13.
CONCLUSION
[7]
In this work, binding as well as spectral changes of the
receptors with anions were studied. The shape and size of the
receptors have been changed to make the receptor more
selective for a particular ion amongst the array of ions. Here
receptor 1 is more suitable for the binding towards Y-shaped
AcO- ion than the other receptors. Similarly receptors 2 and
3 are more suitable for the recognition of spherical Cl- ion
compared to the other ions. This work is now further
extended in our laboratory to the recognition of organic
dicarboxylate anions [17] of varying chain lengths. From the
results it is evident that larger substituent in arm of the urea
moiety directs the selectivity in anion recognition.
[8]
[9]
Sessler, J.L.; Katayev, E.; Pantos, G.D.; Ustynyuk, Y.A. Synthesis
and study of a new diamidodipyrromethane macrocycle. An anion
receptor with a high sulfate-to-nitrate binding selectivity. Chem.
Commun., 2004, 1276-1277.
(a) Beer, P.D.; Gale, P.A. Anion recognition and sensing: the state
of the art and future perspectives. Angew. Chem. Int. Ed. Engl.,
2001, 40, 486-516. (b) Gale, P.A. Anion and ion-pair receptor
chemistry: highlights from 2000 and 2001. Coord. Chem. Rev.,
2003, 240, 191-221. (c) Choi, K.; Hamilton, A.D. Macrocyclic
anion receptors based on directed hydrogen bonding interactions.
Coord. Chem. Rev., 2003, 240, 101-110. (d) Llinares, J.M.; Powell,
D.; Bowman-James, K. Ammonium based anion receptors. Coord.
Chem. Rev., 2003, 240, 57-75. (e) Sessler, J.L.; Camiolo, S.; Gale,
P.A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem.
Rev., 2003, 240, 17-53. (f) Best, M.D.; Tobey, S.L.; Anslyn, E.V.
Abiotic guanidinium containing receptors for anionic species.
Coord. Chem. Rev., 2003, 240, 3-15. (g) Beer, P.D.; Hayes, E.J.
Transition metal and organometallic anion complexation agents.
Coord. Chem. Rev., 2003, 240, 167-189.
ACKNOWLEDGEMENT
We wish to express our appreciation to the CSIR and
DST, Govt. of India for financial support. S. J. thanks the
CSIR, Govt. of India for a research fellowship during
doctoral study. We also thank Dr. Avijit Kumar Adak and
Professor Thomas Schrader for their help for some of the
spectral data.
[10]
(a) Mangani, S.; Ferraroni, M. In Supramolecular Chemistry of
Anions; Chapter 3. Bianchi, A., Bowman-James, K., Garcia-
Espana, E., Eds.; Wiley-VCH: New York, 1997; (b) Beer, P.D.;
Gale, P.A.; Smith, D.K. Supramolecular Chemistry; Chapter 3.
Evans J., Ed.; Oxford Chemistry Primers; Oxford Uni. Press: New
York, 1999; (c) Dudziuk, H. Introduction to Supramolecular
REFERENCES
Chemistry; Chapter
7 and 8. Kluwer Academic Publishers:
[1]
(a) Ashcroft, F.M. Ion Channels and Disease; Academic Press: San
Diego, CA, 2000. (b) Manderville, R.A. Synthesis, proton-affinity
and anti-cancer properties of the prodigiosin-group natural
products. Curr. Med. Chem.-Anti-Cancer Agents, 2001, 1, 195-218
and references therein.
Dordrecht, The Netherlands, 2002; (d) Steed, J.W.; Atwood, J.L.
Supramolecular Chemistry; Chapter 4. John Wiley & Sons Ltd.:
New York, 2000.
[11]
(a) Hu, H–Y.; Chen, C–F. A new fluorescent chemosensor for
anion based on an artificial cyclic tetrapeptide. Tetrahedron Lett.,
2006, 47, 175-179. (b) Kubik, S.; Kirchner, R.; Nolting, D.; Seidel,
J. A molecular oyster: a neutral anion receptor containing two
cyclopeptide subunits with a remarkable sulfate affinity in aqueous
solution. J. Am. Chem. Soc., 2002, 124, 12752-12760. (b) Bitta, J.;
Kubik, S. Cyclic hexapeptides with free carboxylate groups as new
receptors for monosaccharides. Org. Lett., 2001, 3, 2637-2640. (c)
Otto, S.; Kubik, S. Dynamic combinatorial optimization of a
neutral receptor that binds inorganic anions in aqueous solution. J.
Am. Chem. Soc., 2003, 125, 7804-7805. (d) Yang, D.; Qu, J.; Li,
W.; Zhang, Y.H.; Ren, Y.; Wang, D. P.; Wu, Y.D. Cyclic
hexapeptide of D,L-ꢀ-aminoxy acids as a selective receptor for
chloride ion. J. Am. Chem. Soc., 2002, 124, 12410-12411.
(a) De Silva, A.P.; Gunaraine, H.Q.N.; Gunnlaugsson, T.; Huxley,
A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling
recognition events with fluorescent sensors and switches. Chem.
Rev., 1997, 97, 1515-1566. (b) Buhlmann, P.; Prestch, E.; Bakker,
E. Carrier-based ion-selective electrodes and bulk optodes. 2.
ionophores for potentiometric and optical sensors. Chem. Rev.,
1998, 98, 1593-1688. (c) Bondy, C.R., Loeb, S.J. Amide based
receptors for anions. Coord. Chem. Rev., 2003, 240, 77-99. (d)
Martınez-Manezm, R.; Sancenon, F. Fluorogenic and chromogenic
chemosensors and reagents for anions. Chem. Rev., 2003, 103,
4419-4476. (e) Pfeffer, F.M.; Gunnlaugsson, T.; Jensen, P.; Kruger,
P.E. Anion recognition using preorganized thiourea functionalized
[3]polynorbornane receptors. Org. Lett., 2005, 7, 5357-5360.
(a) Desvergne, J. P.; Czarnik, A. W.; Eds.; Chemosensors of ion
and Molecule Recognition; NATO ASI Series; Kluwer Academic:
Dordrecht, 1997; Vol. 492. (b) Anzenbacher, P., Jr.; Jursikova, K.;
Sessler, J.L. Second generation calixpyrrole anion sensors. J. Am.
Chem. Soc., 2000, 122, 9350-9351. (c) Kim, S.K.; Yoon, J. A new
fluorescent PET chemosensor for fluoride ions. Chem. Commun.,
2002, 770-771. (d) Cho, E.J.; Moon, J.W.; Ko, S.; Lee, J.; Kim,
S.K.; Yoon, J.; Nam, K.C. A new fluoride selective fluorescent as
well as chromogenic chemosensor containing a naphthalene urea
derivative. J. Am. Chem. Soc., 2003, 125, 12376-12377. (e) Lee,
[2]
(a) Luecke, H.; Quiocho, F.A. High specificity of a phosphate
transport protein determined by hydrogen bonds. Nature, 1990,
347, 402-406. (b) Pflugrath, J.W.; Quiocho, F. A. Sulphate
sequestered in the sulphate-binding protein of Salmonella
typhimurium is bound solely by hydrogen bonds. Nature, 1985,
314, 257-260.
[3]
(a) Sessler, J.L.; Eller, L.R.; Cho, W.S.; Nicolaou, S.; Aguilar, A.;
Lee, J.T.; Lynch, V.M.; Magda, D.J. Synthesis, anion-binding
properties, and in vitro anticancer activity of prodigiosin analogues.
Angew. Chem. Int. Ed. Engl., 2005, 44, 5989-5992. (b) Seganish,
J.L.; Davis, J.T. Prodigiosin is a chloride carrier that can function
as ananion exchanger. Chem. Commun., 2005, 5781-5783. (c) Gale,
P.A.; Light, M.E.; McNally, B.; Navakhun, K.; Sliwinski, K.E.;
Smith, B.D. Co-transport of H+/Cl– by a synthetic prodigiosin
mimic. Chem. Commun., 2005, 3773-3775. (d) Davis, A.P.;
Sheppard, D.N.; Smith, B.D. Development of synthetic membrane
transporters for anions. Chem. Soc. Rev., 2007, 36, 348-357.
Dutzler, R.; Campbell, E.B.; Cadene, M.; Chait, B.T.; MacKinnon,
R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the
molecular basis of anion selectivity. Nature, 2002, 415, 287-294.
Nieto, M.; Perkins, H.R. Modifications of the acyl-d-alanyl-d-
alanine terminus affecting complex-formation with vancomycin.
Biochem. J., 1971, 123, 773-787.
(a) Schmidtchen, F.P.; Berger, M. Artificial organic host molecules
for anions. Chem. Rev., 1997, 97, 1609-1646. (b) Beer, P.D.;
Bayly, S.R. Anion sensing by metal-based receptors.ꢀ Top. Curr.
Chem., 2005, 255, 125-162. (c) Houk, R.J.T.; Tobey, S.L.; Anslyn,
E.V. Abiotic guanidinium receptors for anion molecular
recognition and sensing. Top. Curr. Chem., 2005, 255, 199-229. (d)
Bowman-James, K. Alfred werner revisited: the coordination
chemistry of anions. Acc. Chem. Res., 2005, 38, 671-678. (e)
Sessler, J.L.; Gale, P.A.; Cho, W.S. Anion Receptor Chemistry;
Royal Society of Chemistry: Cambridge, UK, 2006. (f) Kang, S.O.;
Begum, R.A.; Bowman-James, K. Amide-based ligands for anion
coordination. Angew. Chem. Int. Ed. Engl., 2006, 45, 7882-7894.
[12]
[4]
[5]
[6]
[13]