T. Axenrod et al. / Tetrahedron Letters 42 (2001) 2621–2623
2623
Research (Drs. Richard S. Miller and Judah Goldwasser,
program officers) is gratefully acknowledged.
O2N NO2
N
O2N NO2
O2N
N
O2
q
Ns
r
Ns
Ns
N
N
Ns
N
O2N
N
N
NO2
o-Ns, 65%
p-Ns, 90%
(p-Ns)
F2N NF2
F2N NF2
References
O
18
19
2
1. Zheng, Y.; Huang, T.; Zhang, M.; Wang, X. Proceed-
ings of the International Symposium on Pyrotechnics and
Explosives, Beijing, China, Oct. 1987; China Academic
Publishers: Beijing, 1987; pp. 234–240.
Scheme 4. Reagents and conditions: (q) HNF2–F2NSO3H–
H2SO4–CFCl3, −15°C; (r) HNO3–CF3SO3H–SbF5, rt.
2. (a) Chapman, R. D.; Archibald, T. G.; Baum, K.
Research in Energetic Compounds. Report ONR-7-1
(Interim); Fluorochem: Azusa, CA, 1989; DIALOG
Accession Number 1429659; NTIS Accession Number
AD-A214106; available from the National Technical
Information Service, US Department of Commerce,
Springfield, VA 22161; (b) Research in Energetic Com-
pounds. Report ONR-7-1; Fluorochem: Azusa, CA,
1991; final report to the Office of Naval Research
(Arlington, VA) on Contract N00014-88-C-0536.
3. Miller, R. S. Mater. Res. Soc. Symp. Proc. 1996, 418, 3.
4. Chapman, R. D.; Welker, M. F.; Kreutzberger, C. B. J.
Org. Chem. 1998, 63, 1566.
5. Chapman, R. D.; Gilardi, R. D.; Welker, M. F.;
Kreutzberger, C. B. J. Org. Chem. 1999, 64, 960.
6. (a) Cichra, D. A.; Adolph, H. G. Synthesis 1983, 830;
(b) Chen, B.; Xiao, H.; Li, Y. Acta Armamentarii Sin.
1989, 61.
7. Politzer, P.; Lane, P. Adv. Mol. Struct. Res. 1997, 3,
269.
8. (a) Baum, K. Intra-Sci. Chem. Rep. 1971, 5, 69; (b)
Fokin, A. V.; Kosyrev, Yu. M.; Shevchenko, V. I. Bull.
Acad. Sci. USSR, Div. Chem. Sci. 1982, 1626.
9. Dave, P. R.; Kumar, K. A.; Duddu, R.; Axenrod, T.;
Dai, R.; Das, K. K.; Guan, X.-P.; Sun, J.; Trivedi, N.
J.; Gilardi, R. D. J. Org. Chem. 2000, 65, 1207.
10. For a recent review of oxime to gem-dinitro conver-
sions, see: Honey, P. J.; Millar, R. W.; Coombes, R. G.
Am. Chem. Soc. Symp. Ser. 1996, 623, 134.
11. (a) Paudler, W. W.; Gapski, G. R.; Barton, J. M. J.
Org. Chem. 1966, 31, 277; (b) Dave, P. R.; Forohar, F.;
Axenrod, T.; Das, K. K.; Qi, L.; Watnick, C.;
Yazdekhasti, H. J. Org. Chem. 1996, 61, 8897; (c) Axen-
rod, T.; Qi, L., unpublished results.
difluorosulfamic acid in sulfuric acid. N-Nitrolysis of
dinosyldiazocine 19 proved remarkably difficult. This
could be anticipated for reasons elaborated in the previ-
ous report on the synthesis of HNFX by N-nitrolysis of
a dinosyldiazocine precursor.5 Sterically hindered and
electronegatively substituted protected amines are espe-
cially resistant to N-nitrolysis, and diazocine 19 incorpo-
rates both of these features. A b,b-bis(difluoramino)alkyl
plus a b,b-dinitroalkyl substituent impart even more
electron-withdrawing character than the two bis(difluor-
amino)alkyl substituents of the HNFX precursor; for
example, Taft’s |*(NO2)=4.7214 versus |*(NF2):
4.13.15 Thus, even extended nitrolysis (14 days) of 19 with
the system nitric acid–trifluoromethanesulfonic acid, a
source of the strongly nitrating species protonitronium
(NO2H2+),16 at elevated temperature (55°C) produced
predominantly only the corresponding mononitramine.
Only by addition of a strong Lewis acid, SbF5, to the
nitrating system—in order to generate a higher concen-
tration of protonitronium17—followed by further nitrol-
ysis (2 days) was 2 (TNFX) formed by a clean conversion
as the major product, although thus far in an
unquantified yield. Therefore, the second nitrolysis step
of Scheme 4 may well be the most difficult N-nitrolysis
ever successfully achieved, since the second nitrolysis step
producing HNFX was complete in HNO3–HOTf (with-
out Lewis acid) in only ꢀ40 h.5 Also, only the p-nosyl
isomer of 19 was useful for formation of TNFX because
the o-nosyl derivative underwent para-C-nitration, and
the resulting 2,4-dinitrobenzenesulfonyl derivative was
not effectively nitrolyzed. The product (2) was identified
by multinuclear NMR spectroscopy as well as X-ray
crystallography. CAUTION: TNFX (2) is expected to be
a relatively sensitive high explosive and should be pre-
pared and handled only by qualified personnel!
12. Benoist, E.; Loussouarn, A.; Remaud, P.; Chatal, J.-F.;
Gestin, J.-F. Synthesis 1998, 1113.
In summary, the first successful synthesis of 3,3-bis(difl-
13. Axenrod, T.; Yazdekhasti, H.; Dave, P. R.; Das, K. K.;
Stern, A. G. Org. Prep. Proc. Int. 1997, 29, 358.
14. (a) Cherkasov, A. R.; Galkin, V. I.; Cherkasov, R. A.
Russ. Chem. Rev. 1996, 65, 641; (b) Cherkasov, A. R.;
Galkin, V. I.; Sibgatullin, I. M.; Cherkasov, R. A. Russ.
J. Org. Chem. 1997, 33, 1243.
uoramino)octahydro-1,5,7,7-tetranitro-1,5-diazocine
2
(TNFX) has been realized. All compounds and interme-
diates described here have been fully characterized (1H,
13C NMR, HRMS, and/or X-ray crystallography), and
a complete report of the synthetic details and interesting
crystallographic properties of TNFX will be published
elsewhere.
15. Baum, K. J. Org. Chem. 1970, 35, 1203.
16. (a) Olah, G. A.; Laali, K. K.; Sandford, G. Proc. Nat.
Acad. Sci. USA 1992, 89, 6670; (b) Olah, G. A.; Rasul,
G.; Aniszfeld, R.; Prakash, G. K. S. J. Am. Chem. Soc.
1992, 114, 5608.
Acknowledgements
17. Prakash, G. K. S.; Rasul, G.; Burrichter, A.; Olah, G. A.
Am. Chem. Soc. Symp. Ser. 1996, 623, 10.
Financial support of this work by the Office of Naval
.
.