1422
J. Huang et al.
LETTER
(9) Chang, J. W. W.; Chee, S.; Mak, S.; Burananprasertsuk, P.;
Chavasiri, W.; Chan, P. W. H. Tetrahedron Lett. 2008, 49,
2018.
(10) A multikilogram process has been successfully carried out
by us based on this protocol.
(11) In our original process for the particular drug candidate, the
very expensive 3,4,7,8-tetramethyl-1,10-phenanathroline
(20 mol%, MW = 236.3. $63.9/g, from Aldrich) was used as
ligand.
(12) For the consideration of less stable substrate, intead of
110 °C as the original literature reported (ref. 6k), 100 °C
was chosen for screening purpose.
References and Notes
(1) (a) Metal-Catalyzed Cross-Coupling Reactions; Dieterich,
F.; Stang, P. J., Eds.; Wiley-VCH: New York, 1998.
(b) Modern Arylation Methods; Ackermann, L., Ed.; Wiley-
VCH: Weinheim, 2009.
(2) Among the 22 small molecules marketed theraputic new
molecular entities (NMEs) in 2009 alone, seven of them
contain either aryl aryl or aryl alkyl ether bonds. For details,
see: Hegde, S.; Schmidt, M. In Annual Reports in Medicinal
Chemistry, Vol. 45; Macor, J. E., Ed.; Academic Press:
London, 2010, 467.
(3) Ullmann, F. Ber. Dtsch. Chem. Ges. 1904, 37, 853.
(4) For excellent reviews regarding copper-mediated couplings,
see: (a) Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed.
2009, 48, 6954. (b) Ley, S. V.; Thomas, A. W. Angew.
Chem. Int. Ed. 2003, 42, 5400. (c) Ma, D.; Cai, Q. Acc.
Chem. Res. 2008, 41, 1450. (d) Lindley, J. Tetrahedron
1984, 40, 1433.
(13) In the case of NaOt-Bu, toluene is detected as the major
product from reduction of 4-bromotoluene. Bacon, R. G.;
Ressison, S. C. J. Chem. Soc. C 1969, 312.
(14) Cu(II) salts were found slightly less effective.
(15) The presence of other functional groups such as ester,
carboxylic acid, nitro, and cyano were not successful under
this protocol.
(5) For examples of palladium-catalyzed C–O bond formation,
see: (a) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996,
118, 13019. (b) Palucki, M.; Wolfe, J. P.; Buchwald, S. L.
J. Am. Chem. Soc. 1996, 118, 10333. (c) Shelby, Q.;
Kataoka, N.; Mann, G.; Hartwig, J. F. J. Am. Chem. Soc.
2000, 122, 10178. (d) Parrish, C. A.; Buchwald, S. L. J. Org.
Chem. 2001, 66, 2498.
(6) (a) Niu, J.; Zhou, H.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem.
2008, 73, 7814. (b) Wolter, M.; Nordmann, G.; Job, G. E.;
Buchwald, S. L. Org. Lett. 2002, 4, 973. (c) Lipshutz,
B. H.; Unger, J. B.; Tat, B. R. Org. Lett. 2007, 9, 1089.
(d) Shafir, A.; Lichtor, P. A.; Buchwald, S. L. J. Am. Chem.
Soc. 2007, 129, 3490. (e) Cristau, H. J.; Cellier, P. P.;
Hamada, S.; Spindler, J. F.; Tailefer, M. Org. Lett. 2004, 6,
913. (f) Liu, Y.-H.; Li, G.; Yang, L.-M. Tetrahedron Lett.
2009, 50, 343. (g) Buck, E.; Song, Z. J.; Tschaen, D.;
Dormer, P. G.; Volante, R. P.; Reider, P. J. Org. Lett. 2002,
4, 1623. (h) Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863.
(i) Naidu, A. B.; Sekar, G. Tetrahedron Lett. 2008, 49,
3147. (j) Cai, Q.; Zou, B.; Ma, D. Angew. Chem. Int. Ed.
2006, 45, 1276. (k) Niu, J.; Guo, P.; Kang, J.; Li, Z.; Xu, J.;
Hu, S. J. Org. Chem. 2009, 74, 5075. (l) Marcoux, J.-F.;
Doye, S.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119,
10539.
(16) General Procedure for the Etherification of
Arylbromides
To a 10 mL seal tube were charged alcohol (2.0 mL) and
LiOt-Bu (480 mg, 6.0 mmol). The resulting suspension was
stirred at r.t. for 5 min to form a clear solution. Arylbromide
(2.0 mmol) and CuI (38 mg, 0.2 mmol) were added to the
above solution. The mixture was stirred at r.t. for 5 min to
form a nearly clear solution which was sealed and stirred at
80–110 °C for 18–28 h. The reaction was cooled to r.t. and
quenched with AcOH (pH = 7–8) and diluted with CH2Cl2.
The mixture was washed with H2O (2 × 5 mL) and solvent
removed. The crude residue was purified by silica gel
column chromatography to give the desired product. The
identity and purity of the products are confirmed by 1H
NMR, 13C NMR, and HRMS spectroscopic analysis.
5-(Pentyloxy)pyrimidin-2-ol (Table 2, Entry 8)
Off-white solid. 1H NMR (400 MHz, CDCl3): d = 8.04 (s, 2
H), 3.86 (t, J = 8 Hz, 2 H), 1.77 (m, 2 H), 1.40–1.45 (m, 4 H),
0.94 (t, J = 8 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3):
d = 157.9, 144.8, 142.2, 70.5, 28.7, 28.0, 22.4, 14.0 ppm.
HRMS: m/z calcd for C9H14N2O2: 182.1055; found:
182.1053.
3-(2-Methoxyethoxy)pyridine (Table 2, Entry 9)
Colorless oil. 1H NMR (400 MHz, CDCl3): d = 8.35 (s, 1 H),
8.23 (m, 1 H), 7.23 (m, 2 H), 4.17 (t, J = 4 Hz, 2 H), 3.77
(t, J = 4 Hz, 2 H), 3.46 (s, 3 H) ppm. 13C NMR (100 MHz,
CDCl3): d = 155.0, 142.4, 138.0,. 123.8, 121.4, 70.9, 67.7,
59.3 ppm. HRMS: m/z calcd for C8H11NO2: 153.0790;
found: 153.0785.
(7) For recent examples of continuing efforts to search for better
ligands, see: (a) Altman, R. A.; Shafir, A.; Choi, A.; Lichtor,
P. A.; Buchwald, S. L. J. Org. Chem. 2008, 73, 284.
(b) Maiti, D.; Buchwald, S. L. J. Org. Chem. 2010, 75, 1791.
(8) Zhang, J.; Zhang, Z.; Wang, Y.; Zheng, X.; Wang, Z. Eur. J.
Org. Chem. 2008, 5112.
Synlett 2011, No. 10, 1419–1422 © Thieme Stuttgart · New York