Journal of the American Chemical Society
Page 4 of 5
(2) Scatena, R.; Bottoni, P.; Giardina, B. Ed. Advances in Mitochondri-
al Medicine. In Advances in Experimental Medicine and Biology, Spring-
er: Berlin, 2012; Vol 942.
(3) Walters, A.M.; Porter, G.A. Jr.; Brookes, P.S. Circ. Res. 2012, 111,
1222–1236.
(4) Frezza, C.; Cipolat, S.; Scorrano, L.; Nature Protoc. 2007, 2, 287–
295.
(5) Ulanovskaya, O.A.; Cui, J.; Kron, S.J.; Kozmin, S.A. Chem. Biol.
2011, 18, 222–230.
(6) Cui, J.; Matsumoto, K.; Wang, C.Y.; Peter, M.E.; Kozmin, S.A.
ChemBioChem 2010, 11, 1224–1227.
(7) Cui, J.; Hao, J.; Ulanovskaya, O.A.; Dundas, J.; Liang, J.; Kozmin,
S.A. Proc. Natl. Acad. Sci. USA 2011, 17, 6763–6768.
(8) Lee, H.; Suzuki, M.; Cui, J.; Kozmin, S. A. J. Org. Chem. 2010, 75,
1756–1759.
(9) Gohil, V.M.; Sheth, S.A.; Nilsson, R.; Wojtovich, A.P.; Lee, J.H.;
Perocchi, F.; Chen, W.; Clish, C.B.; Ayata, C.; Brookes, P.S.; Mootha,
V.K. Nature Biotechnol. 2010, 28, 249–255.
(10) Robinson, B.H.; Petrova-Benedict, R.; Buncic, J.R.; Wallace, D.C.
Biochem. Med. Metab. Biol. 1992, 48, 122–126.
(11) Marroquin, L.D.; Hynes, J.; Dykens, J.A.; Jamieson, J.D.; Will, Y.
Toxicol. Sci. 2007, 97, 539–547.
(12) Ulanovskaya, O.A.; Jajic, J.; Suzuki, M.; Sabharwal, S.S.; Schu-
macker, P. T.; Kron, S.J.; Kozmin, S.A. Nature Chem. Biol. 2008, 4, 418–
424.
(13) Clark, L.C. Jr.; Kaplan, S.; Matthews, E.C.; Edwards, F.K.;
Helmsworth, J.A. J. Thorac. Surg. 1958, 36, 488–496.
(14) Zhang, J.; Nuebel, E.; Wisidagama, D.R.R.; Setoguchi, K.; Hong,
J.S.; Van Horn, C.M.; Im am, S.S.; Vergnes, L.; Malone, C.S.; Koehler,
C.M.; Teitell, M.A. Nature Protoc. 2012, 7, 1068–1085.
(15) Reisch, A.S.; Elpeleg, O. Methods Cell. Biol. 2007, 80, 199–222.
(16) Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Jä-
rvinen, T.; Savolainen, J. Nature Rev. Drug Discov. 2008, 7, 255–270.
(17) Dorman, G.; Prestwich, G.D. Biochemistry 1994, 33, 5661–5673.
(18) Vodovozova, E.L. Biochemistry (Moscow) 2007, 72, 5–26.
(19) Park, J.; Oh, S.; Park, B. Angew. Chem. Int. Ed. 2012, 51, 5447–
5451.
(20) Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. An-
gew. Chem., Int. Ed. 2002, 41, 2596–2599.
(21) Bowes, T.; Singh, B.; Gupta, R.S. Histochem. Cell Biol. 2007, 127,
335–346.
(22) Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Science
2009, 324, 1029–1033.
(23) Pollard, P. J., Wortham, N. C. & Tomlinson, I. P. M. Ann. Med.
2003, 35, 632–639.
(24) Alam N.A.; Rowan A.J.; Wortham N.C.; Pollard, P.J.; Mitchell,
M.; Tyrer, J.P.; Barclay, E.; Calonje, E.; Manek, S.; Adams, S.J.; Bowers,
P.W.; Burrows, N.P.; Charles-Holmes, R.; Cook, L.J.; Daly, B.M.; Ford,
G.P.; Fuller, L.C.; Hadfield-Jones, S.E.; Hardwick, N.; Highet, A.S.;
Keefe, M.; MacDonald-Hull, S.P.; Potts, E.D.A.; Crone, M.; Wilkinson,
S.; Camacho-Martinez, F.; Jablonska, S.; Ratnavel, R.; MacDonald, A.;
Mann, R.J.; Grice, K.; Guillet, G.; Lewis-Hones, M.S.; McGrath, H.;
Seukeran, D.C.; Morrison, P.J.; Fleming, S.; Rahman, S.; Kelsell, D.;
Leigh, I.; Olpin, S.; Tomlinson, I.P.M. Hum. Mol. Genet. 2003, 12, 1241–
1252.
(25) Pollard, P. J.; Brière J. J.; Alam, N. A.; Barwell, J.; Barclay, E.;
Wortham, N. C.; Hunt, T.; Mitchell, M.; Olpin, S.; Moat, S. J.; Hargreaves,
I. P.; Heales, S. J.; Chung, Y. L.; Griffiths, J. R.; Dalgleish, A.; McGrath,
J. A.; Gleeson, M. J.; Hodgson, S. V.; Poulsom, R.; Rustin, P.; Tomlinson,
I. P. Hum. Mol. Genet. 2005, 14, 2231–2239.
dose-dependent fashion in vitro (Figure 5A). However, ester 2 did
not exert such effects on this enzyme (Figure S16A), further sup-
porting the evidence that this compound served as a pro-drug,
being converted into the active inhibitor 2 upon entering the cell.
Further experiments established that acid 3 was a competitive
inhibitor of fumarate hydratase with a Ki value of 4.5 µM (Figure
5B), which was fully consistent with antiproliferative activity of
this compound. Similar experiments were conducted to confirm
fumarate hydratase inhibitory activity of compound 4, which was
employed for photoaffinity labeling studies (Figure S18).
1
2
3
4
5
6
7
8
9
In conclusion, we have developed a novel class of cell-permeable
inhibitors of fumarate hydratase. This work was enabled by the
initial observation of nutrient-dependent cytotoxicity of such
compounds, followed by target identification using an effective
photoaffinity labeling strategy. Such compounds display an inter-
esting structure-activity profile and provide useful chemical
probes for modulating the activity of fumarate hydratase in live
cells. Chemical inhibition of fumarate hydratase renders cells
highly dependent on glucose metabolism for survival. In the field
of cancer biology, recent interest has focused on the identification
of genetic disruptions in metabolism that render tumor cells selec-
tively dependent on alternative pathways for survival.22 Humans
carrying mutations in fumarate hydratase are predisposed to the
development of leiomyomatosis and renal cancers, in cells that
undergo loss of heterozygosity. The increases in fumarate and
succinate caused by loss of fumarate hydratase can then promote
tumor progression through the activation of the hypoxia-inducible
transcription factor.23-26 Hence, inhibition of fumarate hydratase
can contribute to tumorigenicity in some cells. However, many
tumor cells exhibit high basal levels of oxidative stress, making
them vulnerable to therapies that augment the generation of reac-
tive oxygen species or that undermine endogenous antioxidant
mechanisms.27 In that regard, loss of fumarate hydratase results
in the accumulation of fumarate that reacts with reduced glutathi-
one, a critical component of the cellular antioxidant defense sys-
tem, to form succinated glutathione.28 Subsequent metabolism by
glutathione reductase depletes NADPH, a proximal substrate for
the maintenance of cellular redox balance and reductive biosyn-
thesis.29 Hence, fumarate hydratase inhibition may have thera-
peutic potential arising from the disruption of cellular redox bal-
ance and by promoting absolute dependence on glycolysis.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Experimental details and data. This material is available free of
AUTHOR INFORMATION
Corresponding Author
(26) Mullen, A.R.; Wheaton, W.W.; Jin, E.S.; Chen, P.-H.; Sullivan,
L.B.; Cheng, T.; Yang, Y.; Linehan, W.M.; Chandel, N.S.; DeBerardinis,
R.J. Nature 2012, 481, 385–388.
(27) Schumacker, P. T. Cancer Cell 2006, 10, 175–176.
(28) Sullivan, L. B.; Martinez-Garcia, E.; Nguyen, H.; Mullen, A. R.;
Dufour, E.; Sudarshan, S.; Licht, J. D.; Deberardinis, R. J.; Chandel, N. S.
Mol. Cell 2013, 51, 236–248.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We are grateful for financial support to the National Institutes of
Health (P50 GM086145), the Chicago Biomedical Consortium
with support from the Searle Funds at the Chicago Community
Trust.
(29) Fan, J.; Ye, J.; Kamphorst, J. J.; Shlomi, T.; Thompson, C. B.;
Rabinowitz, J. D. Nature 2014, 510, 298–302.
REFERENCES
(1) Palmeira, C.M.; Moreno, A.J. Ed. Mitochondrial Bioenergetics. In
Methods in Molecular Biology; Springer: Berlin, 2012; Vol 810.
ACS Paragon Plus Environment