9
3.45 (2H, m, CHAHBOH), 2.95 (1H, tt, J = 9.9, 5.4 Hz, CHPh),
2.02 – 1.78 (6H, m, CH2CH2OH and OH). 13C NMR (CDCl3,
101 MHz) δ = 144.5, 128.6, 127.6, 126.4, 60.8, 39.3, 38.7.
HRMS (ESI+) Found [M+H]+ = 181.1223; C11H17O2 requires
181.1223, ꢀ –0.21 ppm.
We thank GlaxoSmithKline [W.M.A] and the EPSRC
[R.J.A., J.R.F. and T.J.D., Established Career Fellowship
(EP/L023121/1)] for financial support. R.J.A is also grateful to
University College, Oxford for a Junior Research Fellowship. We
thank Prof. Tim Claridge and Dr Nader Amin for helpful
discussions.
4.3. Representative procedure for hydrogen borrowing
annulation: synthesis of (2,3,4,5,6-pentamethylphenyl)(trans-4-
phenylcyclohexyl)methanone (3t)
References and notes
1. Smith, M. B. March’s Advanced Organic Chemistry, 7th Ed, John
Wiley & Sons: New York, 2013.
To a 2–5 mL Biotage microwave vial equipped with a stirrer
bar was added aryl ketone 1 (114 mg, 0.60 mmol), [Cp*IrCl2]2
(9.6 mg, 0.012 mmol), diol 2t (216 mg, 1.20 mmol), PhMe
(0.15 mL) and powdered KOH (135 mg, 2.40 mmol) sequentially
in the open atmosphere. The reaction vessel was sealed with a
microwave vial cap (containing a Reseal™ septum) and an Ar
2. (a) von Keutz, T.; Strauss, F. J.; Cantillo, D.; Kappe, C. O.
Tetrahedron 2018, 74, 3113–3117. (b) Bakker, W. I. I.; Wong, P.
L.; Snieckus, V.; Warrington, J. M.; Barriault, L. Lithium
Diisopropylamide. In e-EROS Encyclopedia of Reagents for
Organic Synthesis, John Wiley & Sons: Chichester, 2001.
3. For representative reviews of hydrogen borrowing catalysis, see:
(a) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv.
Synth. Catal. 2007, 349, 1555–1575. (b) Dobereiner, G. E.;
Crabtree, R. H. Chem. Rev. 2010, 110, 681. (c) Bahn, S.; Imm, S.;
o
balloon was fitted. The vial was heated to 115 C in a preheated
oil bath for 24 h and then the mixture was cooled to RT. The
crude reaction mixture was filtered through a SiO2 plug (eluting
with Et2O) and concentrated in vacuo. Purification by column
chromatography (Pentane:Et2O, 96:4) afforded the title
compound 3t as a white solid (167 mg, 83%, >95:5 d.r.). The
relative stereochemistry was determined by J-coupling constant
analysis. m.p. = 153–154 °C; IR (film) νmax/cm-1 2918, 2850,
1688, 1599, 1491, 1446, 1265, 1314, 1262, 1143, 1112, 1020,
Neubert, L.; Zhang, ̈ M.; Neumann, H.; Beller, M. ChemCatChem
2011, 3, 1853. (d) Pan, S.; Shibata, T. ACS Catal. 2013, 3, 704. (e)
Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712. (f)
Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J.
Angew. Chem. Int. Ed. 2014, 53, 9142. (g) Obora, Y. ACS Catal.
2014, 4, 3972. (h) Yang, Q.; Wang, Q.; Yu, Z. Chem. Soc. Rev.
2015, 44, 2305. (i) Nandakumar, A.; Midya, S. P.; Landge, V. G.;
Balaraman, E. Angew. Chem. Int. Ed. 2015, 54, 11022. (j)
Leonard, J.; Blacker, A. J.; Marsden, S. P.; Jones, M. F.;
Mulholland, K. R.; Newton, R. Org. Process Res. Dev. 2015, 19,
1400. (k) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018,
118, 1410–1459. (l) Holmes, M.; Schwartz, L. A.; Krische, M. J.
Chem. Rev. 2018, 118, 6026–6052. (m) Reed-Berendt, B. G.;
Polidano, K.; Morrill, L. C. Org. Biomol. Chem. 2019, 17, 1595–
1607.
1
988; H NMR (CDCl3, 400 MHz) δ = 7.24 – 7.08 (5H, m, Ph),
2.63 (1H, tt, J = 12.0, 3.3 Hz, CHCOPh*), 2.46 (1H, tt, J = 12.0,
3.4 Hz, CHPh), 2.17 (3H, s, Ar-CH3), 2.12 (6H, s, Ar-CH3), 2.05
(6H, s, Ar-CH3), 2.04 – 1.99 (2H, m, CHeqHaxCHCOPh*), 1.97 –
1.88 (2H, m, CHeqHaxCHPh), 1.56 (2H, qd, J = 13.0, 3.2 Hz,
CHeqHaxCHCOPh*), 1.39 (2H, qd,
J = 13.0, 3.2 Hz,
CHeqHaxCHPh); 13C NMR (CDCl3, 101 MHz) δ = 214.8, 147.0,
140.2, 135.6 , 133.2 128.5, 128.2, 126.9, 126.2, 52.8, 43.9, 33.7,
28.6, 18.1, 16.9, 16.2; HRMS (ESI+) Found [M+H]+ = 335.2369;
C24H31O requires 335.2369, ꢀ –0.29 ppm.
4. (a) Frost, J. R.; Cheong, C. B.; Akhtar, W. M.; Caputo, D. F. J.;
Stevenson, N. G.; Donohoe, T. J. J. Am. Chem. Soc. 2015, 137,
15664–15667. (b) Akhtar, W. M.; Cheong, C. B.; Frost, J. R.;
Christensen, K. E.; Stevenson, N. G.; Donohoe, T. J. J. Am. Chem.
Soc. 2017, 139, 2577–2580.
4.4. Representative procedure for Br2 mediated Ph* cleavage:
Synthesis of butyl trans-4-phenylcyclohexane-1-carboxylate
(18)
5. (a) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai,
N. J. Chem. Soc. Chem. Commun. 1981, 12, 611–612. (b) Todd
Eary, C.; Clausen, D. Tetrahedron Lett. 2006, 47, 6899–6902. (c)
Tsuji, Y.; Huh, K. T.; Ohsugi, Y.; Watanabe, Y. J. Org. Chem.
1985, 50, 1365–1370. (d) Hamid, M. H. S. A.; Allen, C. L.; Lamb,
G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J. A.;
Williams, J. M. J. J. Am. Chem. Soc. 2009, 131, 1766–1774. (e)
Saidi, O.; Blacker, A. J.; Lamb, G. W.; Marsden, S. P.; Taylor, J.
E.; Williams, J. M. J. Org. Process Res. Dev. 2010, 14, 1046–
1049. (f) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. J.
Org. Chem. 2011, 76, 2328–2331. (g) Cami-Kobeci, G.; Slatford,
P. A.; Whittlesey, M. K.; Williams, J. M. J. Bioorg. Med. Chem.
Lett. 2005, 15, 535–537. (h) Kawahara, R.; Fujita, K.; Yamaguchi,
R. Adv. Synth. Catal. 2011, 353, 1161–1168. (i) Enyong, A. B.;
Moasser, B. J. Org. Chem. 2014, 79, 7553–7563. (j) Zhang, W.;
Dong, X.; Zhao, W. Org. Lett. 2011, 13, 5386–5389. (k) Yan, T.;
Feringa, B. L.; Barta, K. Nature Commun. 2014, 5, 5602. (l) Shan,
S. P.; Xiaoke, X.; Gnanaprakasam, B.; Dang, T. T.; Ramalingam,
B.; Huynh, H. V.; Seayad, A. M. RSC Adv. 2014, 5, 4434–4442.
(m) Yamaguchi, R.; Kawagoe, S.; Asai, C.; Fujita, K. Org. Lett.
2008, 10, 181–184. (n) Marichev, K. O.; Takacs, J. M. ACS Catal.
2016, 6, 2205–2210. (o) Apsunde, T. D.; Trudell, M. L. Synthesis
2013, 45, 2120–2124. (p) Fujita, K.; Fujii, T.; Yamaguchi, R. Org.
Lett. 2004, 6, 3525–3528. (q) Miao, L.; DiMaggio, S. C.; Shu, H.;
Trudell, M. L. Org. Lett. 2009, 11, 1579–1582. For a related
process, see: (r) Zhao, Y.; Xu, G.; Yang, G.; Wang, Y.; Shao, P.-
L.; Yau, J. N. N.; Liu, B.; Zhao, Y.; Sun, Y.; Xie, X.; Wang, S.;
Zhang, Y.; Xia, L.; Zhao, Y. Angew. Chem. Int. Ed.
A stirred solution of Ph* ketone 3t (67 mg, 0.20 mmol) in
CH2Cl2 (1 mL) was cooled to –17 oC and Br2 (20 ꢁL, 0.40 mmol)
was added dropwise. The resulting solution was stirred at –17 °C
for 15 min and then n-butanol (45 mg, 0.60 mmol) was added.
The resulting solution was warmed to RT and stirred for 16 h.
After this time the reaction was diluted with Et2O and H2O. The
layers were separated and the aqueous layer was extracted three
times with Et2O. The combined organic extracts were washed
with sat. aq. NaHCO3, sat. aq. Na2S2O3, brine, dried (MgSO4) and
concentrated in vacuo. Purification by column chromatography
(Pentane:Et2O, 97:3) afforded the title compound 18 as a
colourless oil (47 mg, 90%, >95:5 d.r.). The relative
stereochemistry was determined by J-coupling constant analysis.
IR (film) νmax/cm-1 2932, 1730, 1493, 1450, 1314, 1255, 1170,
1021, 752, 699. 1H NMR (CDCl3, 400 MHz) δ = 7.33 – 7.27 (2H,
m, Ph), 7.23 – 7.17 (3H, m, Ph), 4.10 (2H, t, J = 6.6 Hz, OCH2),
2.53 (1H, tt, J = 11.8, 3.5 Hz, CHPh), 2.36 (1H, tt, J = 12.1, 3.6
Hz, CHCO2Bu), 2.15 – 2.08 (2H, m, CHeqHaxCHCO2Bu), 2.02 –
1.95 (2H, m, CHeqHaxCHPh), 1.68
–
1.34 (8H, m,
OCH2CH2CH2CH3, CHeqHaxCHCO2Bu and CHeqHaxCHPh), 0.96
(3H, t, J = 7.4 Hz, OCH2CH2CH2CH3). 13C NMR (CDCl3, 101
MHz) δ = 176.1, 146.9, 128.4, 126.8, 126.1, 64.1, 43.6, 43.1,
6. (a) Ansell; M. F. in Rodd's Chemistry of Carbon Compounds,
Supplements to the 2nd Edition, Volume 2: Alicyclic Compounds;
Elsevier, Amsterdam, Netherlands, 1992. (b) Bravo, L.; Mico, J.
A.; Berrocoso, E. Expert Opin. Drug Discov. 2017, 12, 1281–
1291. (c) Zhang, G.; Yan, G.-M.; Ren, H.-H.; Li, Y.; Wang, X.-J.;
Yang, J. Polym. Chem. 2015, 7, 44–53.
33.3, 30.8, 29.4, 19.2, 13.8. HRMS (ESI+) Found [M+H]+
=
261.1851; C17H25O2 requires 261.1849, ꢀ 0.7 ppm.
Acknowledgments
7. Akhtar, W. M.; Armstrong, R. J.; Frost, J. R.; Stevenson, N. G.;
Donohoe, T. J. J. Am. Chem. Soc. 2018, 140, 11916–11920.