D.S. Suslov et al. / Journal of Molecular Structure 1217 (2020) 128425
5
CH2Cl2 was stirred at room temperature for 1 h. The resulting
yellow solution was concentrated to 5 mL under vacuum. Addition
of diethyl ether (20 mL) formed a lemon precipitate over 5 min,
which was collected, washed with diethyl ether (3 ꢂ 15 mL), and
dried under vacuum.
acac)(PPh3)(HNC4H8O)]BF4 (3% in mixture, based on 1H NMR data
and 31P NMR data):
7.9e7.3 (br., overlapping, HAr(S3)/HAr(S2)), 5.53
(s, minor, H3(S3), acac), 5.49 (s, 0.6H, H3(S1), acac), 5.34 (s, 0.4H,
d
H
3(S2), acac), 4.69 (dd, br., overlapping, J ¼ 9.5 Hz, 1.2H, NH in
morpholine), 3.90 (t(d), br., overlapping, J ¼ 11.7 Hz, Ha,
b-CH2 in
Reaction of [Pd(
dine. The general procedure was followed using [Pd (k2-O,O0-
acac)(PhCN)(PPh3)]BF4 (329 mg, 0.50 mmol) and pyridine (40 L,
k
2-O,O′-acac)(PhCN)(PPh3)]BF4 with pyri-
morpholine), 3.74 (d(d), br., overlapping, J ¼ 9.7 Hz, 2.4H, He,
in morpholine), 3.23 (q(d), br., overlapping, J ¼ 11.0, 2.4H, Hа,
in morpholine), 3.02 (d., overlapping, br., J ¼ 12.7 Hz, 2.4H, He,
b
a
a
-CH2
-CH2
-CH2
m
in morpholine), 2.16 (s, H5(S3)), 2.06 (s, H1,5(S1)), 1.71 (s, H1(S3)), 1.52
0.50 mmol). Yield: 287 mg. Anal. Calcd for C28H27BF4NO2PPd: C,
53.07; H, 4.29; N, 2.21. Found: C, 54.42; H, 4.03; N, 2.14. Spinsys-
tem1: [Pd (k2-O,O0-acac)(PPh3)(Py)]BF4 (82% in mixture, based on
(s, H1,5(S2)). 13C{1H} NMR (101 MHz, CDCl3, 25 ꢁC):
2,4(S1)), 186.35 (t, 3J(P,C)
1.7 Hz, C2,4(S2)), 132.28 (t,
J(P,CAr2,6 5.6 Hz, CAr2,6(S2)), 133.20 (s, CAr4(S2)), 128.9 (t,
J(P,CAr3,5) ¼ 5.7 Hz, CAr3,5(S2)), 126.6e125.5 (m, CAr1(S2)), 101.70 (s,
3(S1)), 100.71 (s, C3(S2)), 66.50 (s, -CH2 in morpholine), 49.82(s,
CH2 in morpholine), 26.25 (t, J(P,C) ¼ 5.4 Hz, C1,5(S2)), 26.12 (s,
1,5(S1)). 31P{1H} NMR (162 MHz, CDCl3, 25 ꢁC):
38.15 (s, 0.08P,
d 186.80 (s,
C
¼
1H NMR). 1H NMR (400 MHz, CD3CN, 25 ꢁC):
d 8.42e8.32 (m, 2H,
)
¼
H
Py1,5), 7.81e7.75 (m, 1H, HPy3), 7.67e7.56 (m, 9H, HAr1,3,5),
7.48e7.43 (m, 6H, HAr2,4), 7.24e7.14 (m, 2H, HPy2,4), 5.67 (d, 5J(P,
H1) ¼ 0.5 Hz, 1H, H3), 2.01 (s, 3H, H1), 1.75 (s, 3H, H5). 13C{1H} NMR
C
b
a-
(101 MHz, CD3CN, 25 ꢁC)
d
189.78 (d, 3J (P,C2) ¼ 3.1 Hz, C2), 186.05
C
d
(d, 3J (P,C4) ¼ 0.9 Hz, C4), 153.11 (d, 3J (P,CPy1,5) ¼ 1.1 Hz, CPy1,5),
[Pd(PPh3)n][BF4]2), 35.44 (s, 0.88P, S2), 26.25 (s, 0.04P, S3). No
chemical analyses were completed.
140.89 (s, CPy3), 135.01 (d, 2J(P,CAr2,6) ¼ 10.9 Hz, CAr2,6), 133.18 (d 4
J
Reaction of [Pd(
pyridine.
The general procedure was followed using [Pd(k2-O,O0-
acac)(PhCN)(TOMPP)]BF4 (186 mg, 0.25 mmol), pyridine (20 L,
0.25 mmol), and 20 mL of CH2Cl2. Yield: 147 mg. Anal. Calcd for
k
2-O,O′-acac)(PhCN)(TOMPP)]BF4 with
(P,CAr4) ¼ 3.1 Hz, CAr4), 130.09 (d, 3J (P,CAr3,5) ¼ 11.5 Hz, CAr3,5),
127.39 (s, CPy2,4), 126.67 (d, 1J(P,CAr1) ¼ 55.7 Hz, CAr1), 101.64 (s, C3),
26.90 (d, 4J(P,C1) ¼ 8.1 Hz, C1), 26.20 (d, 4J (P,C5) ¼ 2.6 Hz, C5). 31P
{1H} NMR (162 MHz, CDCl3, 25 ꢁC):
d
26.21 (s). 19F NMR (376 MHz,
m
CDCl3, 25 ꢁC):
20:80 corresponding to the natural abundances of 10B and 11B,
respectively). Spinsystem2: [Pd
k2-O,O0-acac)(Py)2]BF4 (9% in
mixture, based on 1H NMR).1H NMR (400 MHz, CD3CN, 25 ꢁC):
8.50e8.44 (m, 2H), 8.10e8.00 (m, 1H), 7.73e7.69 (m, 2H), 5.72 (s,
1H), 2.06 (s, 6H). 13C{1H} NMR (101 MHz, CD3CN, 25 ꢁC)
188.52 (s,
d
ꢀ152.01, ꢀ152.07 (intensity ratio of approximately
C
31H33BF4NO5PPd: C, 51.44; H, 4.60; N, 1.94. Found: C, 50.36; H,
4.26; N, 1.52. [Pd(k2-O,O0-acac)(TOMPP)(Py)]BF4 (>95% in mixture,
(
based on H NMR). 1H NMR (400 MHz, CDCl3, 25 ꢁC):
d 8.45e8.35
1
(m, 2H, HPy1,5), 7.85e7.70 (m, 1H, HPy3), 7.65e7.30 (m, 6H, HAri),
7.25e7.16 (m, 2H, HPy2,4), 7.15e6.65 (m, 6H, HAri), 5.35 (s, 0.7H, H3),
5.23 (s, 0.3H, H3), 3.77 (s, 0.1H, HOMe) 3.57 (s, 1.3H, HOMe), 3.42 (s,
7.4H, HOMe), 2.23 (s, 0.2H, H1,5), 2.20 (s, 0.2H, H1,5), 2.12 (s, 0.3H,
d
d
C
2,4), 152.68 (s, CPy1,5), 141.61 (s, CPy3), 127.45 (s, CPy2,4), 101.64 (s,
C3), 26.49 (s, C1,5). Spinsystem3: [Pd (k2-O,O0-acac)(PPh3)2]BF4 (9%
H
1,5)), 2.00 (s, 0.6H, H1,5), 1.96 (s, 2.3H, H1), 1.45 (s, 2.3H, H5)$13C{1H}
in mixture, based on H NMR). 1H NMR (400 MHz, CD3CN, 25 ꢁC):
1
NMR (101 MHz, CDCl3, 25 ꢁC)
d
188.33 (d, 3J (P,C2) ¼ 3.2 Hz, C2),
d
7.43e7.39 (m, 15H), 7.35e7.27 (m, 15H), 5.53 (t, 1H), 1.52 (s, 6H).
184.86 (s), 160.36 (d, 2J (P,CAr2) ¼ 2.4 Hz, CAr2, major), 160.11 (d, 2J
13C{1H} NMR (101 MHz, CD3CN, 25 ꢁC):
d
187.44 (s, C2,4), 135.45 (s,
(P,CAr2) ¼ 2.4 Hz, CAr2, minor), 151.60 (d, 3J (P,CPy1,5) ¼ 1.3 Hz, CPy1,5),
C
Ar2,6), 132.99 (s, CAr4), 129.75 (CAr3,4), 101.64 (s, C3), 25.64 (s, C1,5).
139.52 (s, CPy3), 135.86 (br., CAr6), 134.67 (d, 4J(P,CAr4) ¼ 2.0 Hz, CAr4
minor), 133.93 (d, 4J (P,CAr4) ¼ 2.0 Hz, CAr4, major), 126.14 (s, CPy2,3
minor) 125.37 (s, CPy2,3, major), 121.51 (d, 3J(P,CAr5) ¼ 12.3 Hz, CAr5
,
,
,
31P{1H} NMR (162 MHz, CDCl3, 25 ꢁC):
d 34.87 (s).
Reaction of [Pd(k
2-O,O′-acac)(PhCN)(PPh3)]BF4 with TOMPP.
The general procedure was followed using [Pd(k2-O,O0-
acac)(PhCN)(PPh3)]BF4 (239 mg, 0.36 mmol) TOMPP (128 mg,
0.36 mmol), and 10 mL of CH2Cl2. Yield: 300 mg. Chemical analyses
results: C, 52.13; H, 4.13.1H NMR (400 MHz, CDCl3, 25 ꢁC, Spinsys-
tem1 (S1): [Pd(k2-O,O0-acac)(PPh3)(TOMPP)]BF4 (57% in mixture,
based on 1H NMR), Spinsystem2 (S2): [Pd(k2-O,O0-acac)(PPh3)2]BF4
(26% in mixture), Spinsystem3 (S3): [Pd(k2-O,O0-acac)(TOMPP)2]
minor), 121.14 (d, 3J (P,CAr5) ¼ 12.1 Hz, CAr5, major), 113.05 (d, 1J
(P,CAr1) ¼ 66.0 Hz, CAr1), 112.15 (d, 3J (P,CAr3) ¼ 5.1 Hz, CAr3, minor),
111.62 (d, 3J (P,CAr3) ¼ 5.1 Hz, CAr3, major), 100.73 (s, C3), 55.88 (s,
C
OMe, minor), 55.71 (s, COMe, major), 26.96 (d, 4J(P,C1) ¼ 8.5 Hz, C1),
25.79 (d, 4J (P,C5) ¼ 2.6 Hz, C5). 31P{1H} NMR (162 MHz, CDCl3,
25 ꢁC):
d 14.24 (s).
BF4 (17% in mixture)):
0.3H, H3(S2), acac), 5.26 (s, 0.6H, H3(S1), acac), 5.17 (s, 0.2H, H3(S3)
acac), 3.7e3.0 (br., 9H, overlapping, HOMe), 1.51 (s, 3.2H, HMe1 5(S2)
H5(S1)), 1.41 (s, 1.7H, H1(S1)), 1.31 (s, 1.1H, H1,5(S3)), 13C{1H} NMR
(101 MHz, CDCl3, 25 ꢁC):
186.45, 185.31, 160.51, 134.44, 134.38,
134.33, 134.26, 133.77, 132.29, 131.67, 131.65, 129.22, 129.06, 129.00,
128.95, 128.53, 128.53, 128.41, 128.41, 127.67, 127.67, 127.12, 127.12,
126.64, 126.48, 126.48, 126.20, 126.20, 126.19, 125.91, 125.91, 125.75,
120.81, 120.70, 111.68, 100.82, 100.03, 55.48, 26.38, 26.3.31P{1H}
d 7.7e6.5 (br., 27H, overlapping, HAr), 5.42 (s,
,
2.4. Calculations
,
/
All density functional theory calculations were performed with
the ORCA program [71]. All geometry optimizations were run with
tight convergence criteria, using the BP86 functional [72,73],
making use of the resolution of the identity technique [74]. The
applicability of gradient-corrected functionals as BP86 for the
structural prediction of transition metal compounds and reliable
determination of the kinetic balance are well documented [75e80].
The basis sets that were used were the WeigendꢀAhlrichs basis
d
NMR (162 MHz, CDCl3, 25 ꢁC):
d
35.43 (s, 0.27P, S2), 33.9 (br., 0.28P,
S1), 19.5 (br.), 17.4 (br., S3). 19F NMR (376 MHz, CDCl3, 25 ꢁC):
ꢀ154.84e154.89 (intensity ratio of approximately 20:80 corre-
sponding to the natural abundances of 10B and 11B, respectively).
Reaction of [Pd(
2-O,O′-acac)(PhCN)(PPh3)]BF4 with mor-
pholine. The general procedure was followed using [Pd(k2-O,O0-
acac)(PhCN)(PPh3)]BF4 (267 mg, 0.41 mmol), morpholine (35 L,
d
sets [81,82]. Triple-x-quality basis sets with one set of polarization
functions (def2-TZVP) were used for the palladium and phosphorus
in connection with effective core potentials for Pd. The remaining
atoms were described by slightly smaller def2-SVP basis sets.
k
m
0.41 mmol), and 20 mL of CH2Cl2. Yield: 171 mg. Chemical analyses
results: C, 40.22; H, 6.05; N, 4.25.1H NMR (400 MHz, CDCl3, 25 ꢁC,
Spinsystem1 (S1): [Pd(k2-O,O0-acac)(HNC4H8O)2]BF4 (57% in
mixture, based on 1H NMR data), Spinsystem2 (S2): [Pd(k2-O,O0-
acac)(PPh3)2]BF4 (34% in mixture), Spinsystem3 (S3): [Pd(k2-O,O0-
2.5. X-ray diffraction studies
Data were collected on a BRUKER D8 VENTURE PHOTON 100
CMOS diffractometer with MoK
a
radiation (l ¼ 0.71073 Å) using the
f
and scans technique. The structures were solved and refined by
u