S. Onaka et al. / Inorganica Chimica Acta 312 (2001) 100–110
109
that chlorine exchange with that of the solvent or Cl−
References
impurities is a key process for such a rapid scrambling.
In the X-ray molecular structure section, it has been
suggested that a small amount of impurities are cocrys-
tallized and that these impurities are responsible for the
rather high R values of these compounds. The findings
that the process is not affected by the concentration and
theexchangeisquiterapidevenatlowtemperaturesuggest
that some intramolecular mechanism is operating for 4
and 5. On the basis of these discussions we suggest at
present that a small amount of impurities in the crystals
of 4 and 5 in the form of ClAuPSPAuSPh/ClAuPSPAuCl
or ClAuPSPAuSPh/PhSAuPSPAuSPh, both of which
pairsareconnectedbyaurophilicity,initiatestheexchange
intramolecularly.
[1] D.H. Brown, W.E. Smith, Chem. Soc. Rev. 9 (1980) 217.
[2] R.V. Parish, S.M. Cottrill, Gold. Bull. 20 (1987) 3.
[3] S.J. Lippard, in: I. Bertini, H.B. Gray, S.J. Lippard, J.S. Valen-
tine (Eds.), Bioinorganic Chemistry, University Science Books,
California, 1994, p. 505.
[4] J.J. Bishop, A. Daviso, M.L. Katcher, D.W. Lichtenberg, R.E.
Merill, J.C. Smart, J. Organomet. Chem. 27 (1971) 241.
[5] A.E. Finkelstein, F.R. Roisman, V. Batista, F.G. de Nudelma,
E.H. Titto, M. Misraji, D.T. Walz, J. Rheumatl. 7 (1980) 160.
[6] T.M. Simon, D.H. Kunishima, G.J. Vibert, A. Lobeer, Cancer
44 (1979) 1965.
[7] C.K. Mirabelli, R.K. Johnson, C.M. Sung, L. Faucette, K.
Muirhead, S.T. Crooke, Cancer Res. 45 (1985) 32.
[8] S.L. Lawton, W.J. Rohrbaugh, G.T. Kokotailo, Inorg. Chem. 11
(1972) 2227.
[9] W. Kuchen, H. Hertel, Angew. Chem. 81 (1969) 127 and refer-
ences therein.
[10] H. Schmidbaur, Chem. Soc. Rev. 210 (1995) 391.
[11] F. Scherbaum, A. Grohman, B. Huber, C. Kru¨ger, H. Schmid-
baur, Angew. Chem. 100 (1988) 1602.
[12] K.J. Klabunde (Ed.), ‘Free Atoms, Clusters, and Nanoscale
Particles’, Academic, San Diego, 1994.
[13] C. Joachim, S. Roth (Eds.), ‘Atomic and Molecular Wires’,
Kluwer, Dordrecht, 1997.
[14] (a) R.S. Ingram, M.J. Hostetler, R.W. Murray, T.G. Shaaff, J.T.
Khoury, R.L. Whetten, T.P. Bigioni, D.K. Guthrie, P.N. First,
J. Am. Chem. Soc. 119 (1997) 9279. (b) R.S. Ingram, M.J.
Hostetler, R.W. Murray, J. Am. Chem. Soc. 119 (1997) 9178 and
references therein.
[15] A. Badia, S. Singh, L. Demers, L. Cuccia, G.R. Brown, R.B.
Lennox, Chem. Eur. J. 2 (1996) 359.
[16] T. Vossmeyer, E. DeIonno, J.R. Heath, Angew. Chem. Int. Ed.
Engl. 36 (1997) 1080.
[17] K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Anal.
Chem. 67 (1995) 735 and references therein.
[18] D.M.P. Mingos, J.Y.S. Menzer, D.J. Williams, Angew. Chem.
Int. Ed. Engl. 34 (1995) 1894.
[19] J.M. Lopez-de-Luzuriaga, A. Sladek, H. Schmidbaur, J. Chem.
Soc. Dalton Trans. (1996) 4511.
[20] H. Shmidbaur, Chem. Soc. Rev. (1995) 391 and references
therein.
Temperature dependent 31P NMR (in CDCl3) and 1H
NMR (in d8-THF) measurements on 5 have revealed
another peculiar behavior; 31P NMR signal is shifted to
upfieldwithloweringthetemperaturefroml30.66at50°C
to 29.75 at −50°C as is shown in Fig. 9 (such an upfield
1
shift is not detected for 4). The H NMR signal due to
2,5-H protons moves significantly to a lower field (l 5.05
at −100°C),whilethatof3,4-Hprotonsremainsatalmost
the same field (l 4.45) (Fig. 10). We have demonstrated
in the previous paper that dppfe can take various
conformations due to the rotation of the two cyclopen-
tadienyl rings about the CpꢁFeꢁCp axis [49]. Because this
rotationalmotionisslowedwithloweringthetemperature,
the difference of the magnetic field which two kind of
protons ‘feel’ should be enhanced with lowering the
temperature to shift the 2,5-H signal to a lower-field. The
phosphorus nuclei are close to 2,5-H protons. Thus it is
apparent that the rotation about the CpꢁFeꢁCp axis is
the major origin of the change of the magnetic field to
which these nuclei are exposed, although the directions
1
of shifts for 31P NMR signal and H NMR signal with
lowering the temperature are opposite. We stand on the
aforementioned interpretation at this moment, but under-
standing of this upfield shift and the mechanism of rapid
ligand scrambling are open to future exploration.
[21] (a) P. Pyykko¨, J. Li, N. Runeberg, Chem. Phys. Lett. 218 (1994)
133. (b) P. Pyykko¨, Chem. Rev. 97 (1997) 597.
[22] Z. Tang, A.P. Litvinchuk, H.G. Lee, A.M. Guloy, Inorg. Chem.
37 (1998) 4752.
[23] W. Schneider, A. Bauer, H. Schmidbaur, Organometallics 15
(1996) 5445.
[24] M.J. Irwin, J.J. Vittal, G.P.A. Yap, R.J. Puddephatt, J. Am.
Chem. Soc. 118 (1996) 13101 and references therein.
[25] C.M. Che, W.C. Lo, S.M. Peng, B.C. Tzeng, J. Chem. Soc.
Chem. Commun. (1996) 181.
[26] R. Narayanaswamy, M.A. Young, E. Parkhurst, M. Ouellette,
M.E. Kerr, D.M. Ho, R.C. Elder, A.E. Bruce, M.R.M. Bruce,
Inorg. Chem. 32 (1993) 2506.
4. Supporting material
Tables of atomic coordinates, thermal parameters, and
bond lengths and angles: Ordering information is given
on any current masthead page.
[27] P.M. Van Calcar, M.M. Olmstead, A.L. Balch, Inorg. Chem. 36
(1997) 5231 and references therein.
[28] A.J. Blake, N.R. Champness, A. Khlobystov, D.A. Lemnovskii,
W.S. Li, M. Schro¨der, J. Chem. Soc. Chem. Commun. (1997)
2027.
[29] S. Onaka, Y. Katsukawa, M. Yamashita, Chem. Lett. (1998)
525.
[30] (a) M. Nakamoto, W. Hiller, H. Schmidbaur, Chem. Ber. 126
(1993) 605. (b) J.P. Fackler Jr., R.J. Staples, A. Elduque, T.
Grant, Acta Crystallogr. C50 (1994) 520.
Acknowledgements
This research was funded by the Iketani Science and
Technology Foundation and Grants-in-Aid for Scientific
Research on Priority Areas (No. 10149221 ‘Metal-assem-
bled Complexes’) from the Ministry of Education, Sci-
ence, Sports, and Culture, Japan.