Organic Letters
Letter
ACKNOWLEDGMENTS
■
We thank the NIH/National Institute of General Medical
Sciences (R01-GM118644) and the Packard Foundation for
financial support. R.B.W. thanks the National Science Founda-
tion for a predoctoral fellowship (Grant No. 1256260). We thank
Dr. Jeff W. Kampf, University of Michigan, for X-ray crystallo-
graphic studies.
REFERENCES
■
(1) (a) Perveen, S.; Zhao, Z.; Zhang, G.; Liu, J.; Anwar, M.; Fang, X.
Org. Lett. 2017, 19, 2470−2473. (b) Hatfield, M. J.; Tsurkan, L. G.;
Hyatt, J. L.; Edwards, C. C.; Lemoff, A.; Jeffries, C.; Yan, B.; Potter, P. M.
J. Nat. Prod. 2013, 76, 36−44. (c) Goncalves, S.; Nicolas, M.; Maillos, P.;
Baati, R. Tetrahedron 2011, 67, 8373−8382. (d) Nayak, M.; Singh, D. K.;
Kim, I. Tetrahedron 2017, 73, 1831−1840. (e) Pinto, O.; Sardinha, J.;
Vaz, P. D.; Piedade, F.; Calhorda, M. J.; Abramovitch, R.; Nazareth, N.;
Pinto, M.; Nascimento, M. S. J.; Rauter, A. P. J. Med. Chem. 2011, 54,
3175−3187. (f) Zhu, S.; Liang, R.; Jiang, H.; Wu, W. Angew. Chem. 2012,
124, 11019−11023.
(2) (a) Wang, B.; Leng, H.-J.; Yang, X.-Y.; Han, B.; Rao, C.-L.; Liu, L.;
Peng, C.; Huang, W. RSC Adv. 2015, 5, 88272−88276. (b) Soper, J. H.;
Sugiyama, S.; Herbst-Robinson, K.; James, M. J.; Wang, X.; Trojanowski,
J. Q.; Smith, A. B., III; Lee, V. M. Y.; Ballatore, C.; Brunden, K. R. ACS
Chem. Neurosci. 2012, 3, 928−940. (c) Barker, M.; Clackers, M.; Copley,
R.; Demaine, D. A.; Humphreys, D.; Inglis, G. G. A.; Johnston, M. J.;
Jones, H. T.; Haase, M. V.; House, D.; Loiseau, R.; Nisbet, L.; Pacquet,
F.; Skone, P. A.; Shanahan, S. E.; Tape, D.; Vinader, V. M.; Washington,
M.; Uings, I.; Upton, R.; McLay, I. M.; Macdonald, S. J. F. J. Med. Chem.
2006, 49, 4216−4231.
(3) Gu, Z.; Boursalian, G. B.; Gandon, V.; Padilla, R.; Shen, H.;
Timofeeva, T. V.; Tongwa, P.; Vollhardt, K. P. C.; Yakovenko, A. A.
Angew. Chem., Int. Ed. 2011, 50, 9413−9417.
(4) Stevens, L. A.; Goetz, K. P.; Fonari, A.; Shu, Y.; Williamson, R. M.;
Bredas, J.-L.; Coropceanu, V.; Jurchescu, O. D.; Collis, G. E. Chem.
Mater. 2015, 27, 112−118.
(5) (a) Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem., Int. Ed.
2003, 42, 3504−3506. (b) Zhu, S.; Huang, H.; Zhang, Z.; Ma, T.; Jiang,
H. J. Org. Chem. 2014, 79, 6113−6122.
Figure 5. Mechanistic hypothesis for the FeCl3-catalyzed formation of
tetrahydronaphthalenes.
alkylation with the pendant aromatic moiety to from carbocation
41. Our experimental observations suggest that under Lewis acidic
conditions pyran 40 forms initially. However, the reversibility of
this step ultimately leads to the formation of tetrahydronaph-
thalene 42 following Friedel−Crafts alkylation and rearomatiza-
tion. In comparison, Brønsted acid catalysis does not mediate the
desired reaction pathway and provides pyrans 40 as products.
In summary, we have developed a mild and catalytic method
for the synthesis of tetrahydronaphthalenes bearing a variety of
electronically distinct substituents. Mechanistic investigations
suggest the role of intermediate 3,4-dihydro-2H-pyrans in the
FeCl3-catalyzed synthesis of tetrahydronaphthalenes. This trans-
formation illustrates the ability of aryl ketones to be selectively
converted into 3,4-dihydro-2H-pyran or tetrahydronaphthalene
products by the use of either a Brønsted or Lewis acid catalyst.
(6) Luan, Y.; Barbato, K. S.; Moquist, P. N.; Kodama, T.; Schaus, S. E. J.
Am. Chem. Soc. 2015, 137, 3233−3236. For other selected strategies on
the synthesis of functionalized tetrahydronaphthol derivatives utilizing
TESOTf and dihydronaphthalene derivatives utilizing AuCl3, see:
(a) Ling, J.; Lam, S. K.; Lo, B.; Lam, S.; Wong, W.-T.; Sun, J.; Chen, G.;
Chiu, P. Org. Chem. Front. 2016, 3, 457−461. (b) Dyker, G.;
Hildebrandt, D.; Liu, J.; Merz, K. Angew. Chem., Int. Ed. 2003, 42,
4399−4402.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(7) Watson, R. B.; Golonka, A. N.; Schindler, C. S. Org. Lett. 2016, 18,
1310−1313.
Experimental details and spectroscopic data for all inter-
mediates, reactants, and products (PDF)
(8) For recent examples, see: (a) Lempenauer, L.; Dunach, E.;
Lemiere, G. Chem. - Eur. J. 2017, 23, 10285−10288. (b) Truong, P.;
Shanahan, C. S.; Doyle, M. P. Org. Lett. 2012, 14, 3608−3611.
(c) Caneque, T.; Truscott, F. M.; Rodriguez, R.; Maestri, G.; Malacria,
M. Chem. Soc. Rev. 2014, 43, 2916−2926.
Accession Codes
CCDC 1589086 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
(9) For a recent review on iron catalysis in organic synthesis, see:
Bauer, I.; Knolker, H.-J. Chem. Rev. 2015, 115, 3170−3387.
̈
(10) Formation of tetrahydronaphthalenes has been observed using
catalytic amounts of Bi(OTf)3 in MeNO2 in three cases: Chang, M.-Y.;
Cheng, Y.-C.; Lu, Y.-J. Org. Lett. 2015, 17, 3142−3145.
(11) For related reports on the synthesis of functionalized naphthalene
derivatives, see: (a) Xu, Q.; Gu, P.; Wang, F.; Shi, M. Org. Chem. Front.
2015, 2, 1475−1484. (b) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am.
Chem. Soc. 2004, 126, 7458−7459. (c) Asao, N.; Takahashi, K.; Lee, S.;
Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650−12651.
(d) Sato, K.; Menggenbateer; Kubota, T.; Asao, N. Tetrahedron 2008,
64, 787−796. (e) Asao, N.; Sato, K. Org. Lett. 2006, 8, 5361−5363.
(f) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003,
125, 10921−10925.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX