M. Cheung et al. / Tetrahedron Letters 42 (2001) 999–1001
1001
1
4. (a) For synthesis of oxindole, see: Gassman, P. G.;
Bergen, T. J. van. J. Am. Chem. Soc. 1974, 96, 5508; (b)
For synthesis of 4-azaoxindole, see: Finch, N.; Robison,
M. M.; Valerio, M. P. J. Org. Chem. 1972, 37, 51; (c) For
synthesis of 4- and 6-azaoxindole, see: Daisley, R. W.;
Hanbali, J. R. Synthetic Communications, 1981, 11, 743;
(d) For synthesis of 5-azaoxindole, see: Robinson, R. P.;
Donahue, K. M. J. Org. Chem. 1991, 56, 4805; (e) For
synthesis of 7-azaoxindole, see: Marfat, A.; Carta, M. P.
Tetrahedron Lett. 1987, 28, 4027.
5. (a) Awaya, A.; Nakano, T.; Kobayashi, H.; Tan, K.;
Horikomi, K.; Sasaki, T.; Yokoyama, K.; Ohno, H.;
Kato, K.; Kitahara, T.; Tomino, I.; Isayama, S. U.S.
Patent 4 959368, 1987; Chem. Abstr. 1988, 109, 73472j;
(b) Hennequin, L. F. A.; Ple, P.; Lohmann, J.-J. M.;
Thomas, A. P. PCT Int. Appl., WO 9910349, 1999.
6. 1H NMR (300 or 400 MHz) and mass spectrometry
(APCI or ES) were used to identify all reaction products.
7. Sakamoto, T.; Kondo, Y.; Yasuhara, Y.; Yamanaka, H.
Heterocycles 1990, 31, 219.
2H); MS (+ve APCI) m/z (209, M+H). E isomer of 2: H
NMR (300 MHz, CDCl3): l 7.97 (s, 1H), 6.78 (d, J=12.7
Hz, 1H), 5.44 (d, J=12.7 Hz, 1H), 5.41 (bs, 2H), 3.96 (q,
J=7.1 Hz, 2H), 1.39 (t, J=7.1 Hz, 3H); MS (+ve APCI)
m/z (200, M+H). Z isomer of 2: 1H NMR (300 MHz,
CDCl3): l 8.22 (s, 1H), 6.28 (d, J=7.1 Hz, 1H), 5.60 (bs,
2H), 4.93 (d, J=7.1 Hz, 1H), 4.00 (q, J=7.1 Hz, 2H),
1.31 (t, J=7.1 Hz, 3H); MS (+ve APCI) m/z (200, M+H).
1
3: H NMR (400 MHz, CDCl3): l 10.87 (s, 1H), 8.88 (s,
1H), 7.40 (m, 1H), 6.63 (m, 1H); MS (+ve APCI) m/z
1
(154, M+H). 3a: H NMR (300 MHz, CDCl3): l 7.94 (s,
1H), 5.78 (bs, 2H), 4.48 (t, J=4.8 Hz, 1H), 3.46 (s, 6H),
1
2.79 (d, J=4.8 Hz, 2H). 4: H NMR (300 MHz, CDCl3):
l 8.57 (s, 1H); MS (-ve APCI) m/z (326, M-H). 5: 1H
NMR (400 MHz, DMSO-d6): l 11.71 (s, 1H), 8.20 (s,
1
1H), 3.57 (s, 2H); MS (-ve APCI) m/z (168, M-H). 7: H
NMR (300 MHz, CDCl3): l 8.35 (s, 1H), 6.81 (m, 1H),
6.58 (d, J=17.9 Hz, 1H), 5.76 (d, J=10 Hz, 1H), 3.63 (s,
1
2H); MS (+ve APCI) m/z (162, M-H). 8: H NMR (300
MHz, CDCl3): l 7.88 (s, 1H), 6.41 (bs, 1H), 3.34 (s, 2H),
8. Sakamoto, T.; Satoh, C.; Kondo, Y.; Yamanaka, H.
3.21 (q, J=6.7 Hz, 2H), 1.54 (m, 2H), 0.93 (t, J=7.5 Hz,
Heterocycles 1992, 34, 2379.
1
3H); MS (-ve APCI) m/z (191, M-H). 9a: H NMR (400
9. (a) Yamanaka, H.; Sakamoto, T.; Satoh, C.; Niitsuma, S.
JP. Patent 05025175, 1993; (b) Sakamoto, T.; Satoh, C.;
Kondo, Y.; Yamanaka, H. Chem. Pharm. Bull. 1993, 41,
81.
10. Compound 3a was also isolated from the reaction mix-
ture. It can be converted by 3 by repeating the same
cyclization conditions (HCl in MeOH under reflux).
MHz, DMSO-d6): l 12.04 (s, 1H), 8.66 (s, 2H), 8.64 (s,
1
1H), 7.93 (s, 1H); MS (-ve APCI) m/z (430, M-H). 9b: H
NMR (400 MHz, DMSO-d6): l 11.64 (s, 1H), 8.15 (s,
1H), 7.95 (s, 1H), 7.91 (s, 1H), 7.21 (s, 1H), 7.09 (s, 1H),
6.96 (s, 1H); MS (-ve APCI) m/z (396, M-H).
12. Cheung, M.; Glennon, K. C.; Lackey, K. E.; Peel, M. R.
PCT int. Appl., WO 9921859, 1999.
13. Both E and Z isomers were observed in the 1H NMR
spectra with Z isomer as major product. This trend was
observed in previously published benzylidine oxindole
series (see Ref. 3b).
14. McDonald, O. B.; Chen, W. J.; Ellis, B.; Hoffman, C.;
Overton, L.; Rink, M.; Smith, A.; Marshall, C. J.; Wood,
E. R. Analytical Biochem. 1999, 268, 318.
11. Spectroscopicdata for selected compounds are provided.
1
1: H NMR (400 MHz, CDCl3): l 8.22 (s, 1H), 5.71(bs,
.