10.1002/anie.201811297
Angewandte Chemie International Edition
COMMUNICATION
[15] Beller
has
shown
that
1,1-diphenylethylene
undergoes
Acknowledgements
hydroaminomethylations with piperidines bearing remote pyridyl and
pyrimidyl groups, but this olefin undergoes hydroaminomethylation with
4-aminopyridine in low yield. M. Ahmed, C. Buch, L. Routaboul, R.
Jackstell, H. Klein, A. Spannenberg, M. Beller, Chem. Eur. J. 2007, 13,
1594-1601.
This work was supported by the Director, Office of Science, U.S.
Department of Energy, under contract No. DE-AC02-05CH1123.
Jeffrey C. Holder thanks the National Institutes of Health for sup-
port through 5F32GM112312.
[16] Reaction Conditions: 0.5 mmol methyl eugenol, 0.5 mmol 2-
aminopyridine, 40 bar CO:H2 (1:5), [Rh(COD)2]BF4 (0.1 mol%),
Xantphos (0.4 mol%), 1.5 mL PhMe:MeOH (1:1), 125 °C, 20 h
Keywords: hydroaminomethylation • bimetallic • multicatalytic •
transfer hydrogenation • hydroformylation • reductive amination
[1]
[2]
a) K. S. Hayes, Appl. Catal., A 2001, 221, 187-195; b) P. Roose, K. Eller,
E. Henkes, R. Rossbacher, H. Höke in Amines, Aliphatic, 2015.
a) D. Crozet, M. Urrutigoity, P. Kalck, ChemCatChem 2011, 3, 1102-
1118; b) C. D. Chen, X.-Q.; Zhang, X., Org. Chem. Front. 2016, 3, 1359–
1370; c) P. Kalck, M. Urrutigoïty, Chem. Rev. 2018, 118, 3833-3861.
J. F. Hartwig in Organotransition Metal Chemistry: From Bonding to
Catalysis, 1 ed., University Science Books, Mill Valley, California, 2009,
774.
[3]
[4]
[5]
M. Ahmed, A. M. Seayad, R. Jackstell, M. Beller, J. Am. Chem. Soc.
2003, 125, 10311-10318.
a) A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross, M. Beller,
Science 2002, 297, 1676-1678; b) M. Ahmed, R. P. J. Bronger, R.
Jackstell, P. C. L. Kamer, P. W. N. M. van Leeuwen, M. Beller, Chem.
Eur. J. 2006, 12, 8979-8988; c) T. O. Vieira, H. Alper, Chem. Commun.
2007, 2710-2711; d) G. Liu, K. Huang, C. Cai, B. Cao, M. Chang, W. Wu,
X. Zhang, Chem. Eur. J. 2011, 17, 14559-14563; e) J. R. Briggs, J. Klosin,
G. T. Whiteker, Org. Lett. 2005, 7, 4795-4798; f) G. T. Whiteker, Top.
Catal. 2010, 53, 1025-1030; g) G. Liu, K. Huang, B. Cao, M. Chang, S.
Li, S. Yu, L. Zhou, W. Wu, X. Zhang, Org. Lett. 2012, 14, 102-105; h) L.
Wu, I. Fleischer, R. Jackstell, M. Beller, J. Am. Chem. Soc. 2013, 135,
3989; i) G. Liu, Z. Li, H. Geng, X. Zhang, Catal. Sci. Technol. 2014, 4,
917-921; j) J. Liu, C. Kubis, R. Franke, R. Jackstell, M. Beller, ACS
Catalysis 2016, 6, 907-912; k) M. A. Subhani, K.-S. Mueller, P. Eilbracht,
Adv. Synth. Catal. 2009, 351, 2113-2123; l) A. Schmidt, M. Marchetti, P.
Eilbracht, Tetrahedron 2004, 60, 11487-11492.
[6]
[7]
L. Routaboul, C. Buch, H. Klein, R. Jackstell, M. Beller, Tetrahedron Lett.
2005, 46, 7401-7405.
For multicatalytic strategies for the combination of hydroformylation with
the hydrogenation of aldehydes, see the following publications: a) K.
Takahashi, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2012, 134,
18746-18757; b) T. Kohei, Y. Makoto, I. Takeo, N. Koji, N. Kyoko, Angew.
Chem. Int. Ed. 2010, 49, 4488-4490; c) Y. Yuki, K. Takahashi, Y. Tanaka,
K. Nozaki, J. Am. Chem. Soc. 2013, 135, 17393-17400.
[8]
[9]
a) B. Zimmermann, J. Herwig, M. Beller, Angew. Chem. Int. Ed. 1999,
38, 2372-2375; b) Y. Wang, C. Zhang, M. Luo, H. Chen, X. J. Li, Arkivoc
2008, xi, 165-174.
a) B. Villa-Marcos, J. Xiao, Chinese J. Catal. 2015, 36, 106-112; b) J. M.
Han, L. Xing-Han, Y. Zhi, Org. Lett. 2017, 19, 1076.
[10] a) D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621-6686; b) M. S.
Takao Ikariya in Bifunctional Molecular Catalysis, Vol. 37, Springer-
Verlag Berlin Heidelberg, 2011, 31-53; c) P. A. D. Gordon, C. John,
Dalton Trans. 2016, 45, 6741-7180.
[11] J. Blacker, J. Martin, in Asymmetric Catalysis on Industrial Scale, Wiley-
VCH Verlag GmbH & Co. KGaA, 2004, pp. 201-216.
[12] a) C. Wang, A. Pettman, J. Bacsa, J. Xiao, Angew. Chem. 2010, 122,
7710-7714; b) D. Talwar, N. P. Salguero, C. M. Robertson, J. Xiao, Chem.
Eur. J. 2014, 20, 245-252; c) W. T. Xiao, L. Chunho, W. Xiaofeng,
Jianliang, Synlett 2013, 25, 81-84.
[13] Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue, J. Xiao, Chem. Eur. J. 2013,
19, 4021-4029.
[14] The precise pH of the buffer strongly influences the outcomes of
reductive aminations with Xiao's catalyst. Under basic conditions, neither
imines nor ketones are protonated, and the reduction does not occur. In
contrast, under highly acidic conditions, amines, ketones, and imines are
protonated and both the chemoselectivity for the reduction of C=N bonds
and the rate of the reductive amination are low. See reference 14.
This article is protected by copyright. All rights reserved.