Synthesis of Pyrrolo[2,3-b]pyridin-5-one
A R T I C L E S
Scheme 1
Figure 1.
multicomponent synthesis of a heterocycle13 that is appropriately
functionalized, allowing it to be engaged in the subsequent
domino process. In an ideal case, the heterocycle obtained by
MCR should be polyfunctionalized in such a way that different
domino processes can be envisaged leading to completely
different but biologically relevant cyclic scaffolds.14 At the
current stage of development in this field, although the sequence
of MCR/postfunctionalization has been elegantly developed,15
the multicomponent synthesis of heterocycles that is susceptible
for further scaffold diversification and amplification is rare.16
In this paper, we describe a novel three-component synthesis
of 5-aminooxazole (1) and its subsequent one-pot triple domino
transformation to pyrrolopyridine 2 (Figure 1).17 A serendipitous
discovery that ammonium chloride can promote the Ugi-type
condensation in toluene allowed us to develop subsequently a
one-pot four-component synthesis of pyrrolopyridine.
domimetics.19 Recently, polyfunctionalized oxazoles20 and ox-
azole-containing macrocycles21 have also been designed and
used for multidirectional elaboration of combinatorial libraries
and for selective molecular recognition of smaller molecular
targets. However, none of the existing methods could satisfy
our general goal aimed at using oxazole as a scaffold-generating
template in a diversity-oriented synthetic program.22,23 Conse-
quently, an expeditious construction of oxazole via multicom-
ponent reaction was sought. The sequence of event that we
envisaged is shown in Scheme 1. Thus, condensation of an
aldehyde 3 and an amine 4 should give the imine 6, which would
react with isonitrile 5 to produce the nitrilium intermediate 7.
This latter intermediate, after tautomerization would cyclized
to produce the desired oxazole 1. While the proposed sequence
seemed logical, two uncertainties persisted. First, it has been
reported that the reaction between imine and isonitrile occurred
only in the presence of acid catalysis.24 In Ugi 4CR, the role of
carboxylic acid is not only to trap the nitrilium intermediate
Results and Discussion
Three-Component Synthesis of 5-Aminooxazole. Synthesis
of oxazole has attracted a renewed interest due to its presence
in a number of bioactive marine natural products18 and its
application in the design of conformationally restricted pepti-
(13) (a) Do¨mling, A.; Starnecker, M.; Ugi, I. Angew. Chem., Int. Ed. Engl. 1995,
34, 2238-39. (b) Ugi, I.; Demharter, A.; Ho¨rl, W.; Schmid, T. Tetrahedron
1996, 52, 11657-11664. (c) Mjalli, A. M. M.; Sarshar, S.; Baiga, T. J.
Tetrahedron Lett. 1996, 37, 2943-2946. (d) Short, K. M.; Mjalli, A. M.
M. Tetrahedron Lett. 1997, 38, 359-362. (e) Pitlik, J.; Townsend, C. A.
Biorg. Med. Chem. Lett. 1997, 7, 3129-3134. (f) Harriman, G. C. B.
Tetrahedron Lett. 1997, 38, 5591-5594. (g) Hanusch-Kompa, C.; Ugi, I.
Tetrahedron Lett. 1998, 39, 2725-2728. (h) Park, S. J.; Keum, G.; Kang,
S. B.; Koh, H. Y.; Kim, Y.; Lee, D. H. Tetrahedron Lett. 1998, 39, 7109-
7112. (i) Bienayme´, H.; Bouzid, K. Tetrahedron Lett. 1998, 39, 2735-
2738. (j) Bienayme´, H.; Bouzid, K. Angew. Chem., Int. Ed. Engl. 1998,
37, 2234-2237. (k) Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661-
663. (l) Blackburn, C. Tetrahedron Lett. 1998, 39, 5469-5472. (m) Nixey,
T.; Kelly, M.; Hulme, C. Tetrahedron Lett. 2000, 41, 8729-8733. For an
ingenious application of Ugi 4CR in the synthesis of macrocyclic peptide,
see: (n) Failli, A.; Immer, H.; Go¨tz, M. Can. J. Chem. 1979, 57, 3257-
3261.
(19) (a) Von Geldern, T. W.; Hutchins, C.; Kester, J. A.; Wu-Wong, J. R.; Chiou,
W.; Dixon, D. B.; Opgenorth, T. J. J. Med. Chem. 1996, 39, 957-967. (b)
Von Geldern, T. W.; Kester, J. A.; Bal, R.; Wu-Wong, J. R.; Chiou, W.;
Dixon, D. B.; Opgenorth, T. J. J. Med. Chem. 1996, 39, 968-981. (c)
Falorni, M.; Dettori, G.; Giacomelli, G. Tetrahedron: Asymmetry 1998, 9,
1419-1426. (d) Falorni, M.; Giacomelli, G.; Porcheddu, A.; Dettori, G.
Eur. J. Org. Chem. 2000, 3217-3222.
(14) For the concept of “from libraries to libraries”, see: Ostresh, J. M.; Husar,
G. M.; Blondelle, S. E.; Do¨rner, B.; Weber, P. A.; Houghten, R. A. Proc.
Natl. Acad. Sci. U.S.A. 1994, 91, 11138-11142.
(20) Grabowska, U.; Rizzo, A.; Farnell, K.; Quibell, M. J. Comb. Chem. 2000,
2, 475-490.
(21) Haberhauer, G.; Somogyi, L.; Rebek, J., Jr. Tetrahedron Lett. 2000, 41,
5013-5016. (b) Somogyi, L.; Haberhauer, G.; Rebek Jr., J Tetrahedron
2001, 57, 1699. (c) Singh, Y.; Sokolenko, N.; Kelso, M. J.; Gahan, L. R.;
Abbenante, G.; Fairlie, D. P. J. Am. Chem. Soc. 2001, 123, 333-334.
(22) For recent syntheses, see: (a) Cardwell, K. S.; Hermitage, S. A.; Sjolin,
A. Tetrahedron Lett. 2000, 41, 4239-4242. (b) Nishida, A.; Fuwa, M.;
Naruto, S.; Sugano, Y.; Saito, H.; Nakagawa, M. Tetrahedron Lett. 2000,
41, 4791-4794. (c) Lee, J. C.; Song, I.-G. Tetrahedron Lett. 2000, 41,
5891-5894. (d) Schaus, J. V.; Panek, J. S. Org. Lett. 2000, 2, 469-471.
(e) Lautens, M.; Roy, A. Org. Lett. 2000, 2, 555-557. (f) Phillips, A. J.;
Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165-
1168. (g) Ducept, P. C. Synlett 2000, 692-694. (h) Clapham, B.; Spanka,
C.; Janda, K. D. Org. Lett. 2001, 3, 2173-2176.
(15) (a) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 2574-
2583. (b) Keating, T. A.; Armstrong, R. W. J. Org. Chem. 1996, 61, 8935-
8939. (c) Hulme, C.; Peng, J.; Tang, S. Y.; Burns, C. J.; Morize, I.;
Labaudiniere, R. J. Org. Chem. 1998, 63, 8021-8023. (d) Fokas, D.; Ryan,
W. J.; Casebier, D. S.; Coffen, D. G. Tetrahedron Lett. 1998, 39, 2235-
2238. (e) Hulme, C.; Cherrier, M. P. Tetrahedron Lett. 1999, 40, 5295-
5299. (f) Wang, H.; Ganesan, A. Org. Lett. 1999, 1, 1647-1649. (g)
Bienayme, H.; Bouzid, K. Tetrahedron Lett. 1999, 40, 2735-2738. (h)
Paulvannan, K. Tetrahedron Lett. 1999, 40, 1851-1854. (i) Paulvannan,
K.; Jacobs, J. W. Tetrahedron 1999, 55, 7433-7440. (j) Hulme, C.; Ma,
L.; Cherrier, M.-P.; Romano, J. J.; Morton, G.; Duquenne, C.; Salvino, J.;
Labaudiniere, R. Tetrahedron Lett. 2000, 41, 1883-1887. (k) Quiroga, J.;
Cisneros, C.; Insuasty, B.; Abonia´, R.; Nogueras, M.; Sa´nchez, A.
Tetrahedron Lett. 2001, 42, 5625-5627. (l) Simon, C.; Peyronel, J.-F.;
Rodriguez, J. Org. Lett. 2001, 3, 2145-2148. (m) Beck, B.; Magnin-
Lachaux, M.; Herdtweck, E.; Do¨mling, A. Org. Lett. 2001, 3, 2875-2878.
(16) For scaffold-generating reactions from common macrocycles, see: Lee,
D.; Sello, J. K.; Schreiber, S. L. J. Am. Chem. Soc. 1999, 121, 10648-
10649.
(23) For recent total synthesis of oxazole-containing natural products, see: (a)
Williams, D. R.; Brooks, D. A.; Berliner, M. A. J. Am. Chem. Soc. 1999,
121, 4924-4925. (b) Smith, A. B.; Friestad, G. K.; Barbosa, J.; Ber-
tounesque, E.; Duan, J. J. W.; Hull, K. G.; Iwashima, M.; Qiu, Y. Spoors,
P. G.; Salvatore, B. A. J. Am. Chem. Soc. 1999, 121, 10478-10486. (c)
Chattopadhyay, S. K.; Kempson, J.; McNeil, A. Pattenden, G.; Reader,
M.; Rippon, D. E.; Waite, D. J. Chem. Soc. PT1 2000, 2415-2428. (d)
Chattopadhyay, S. K.; Pattenden, G. J. Chem. Soc. PT1 2000, 2429-2454.
(e) Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J. J. Am.
Chem. Soc. 2000, 122, 3301-3313. (f) Evans, D. A.; Cee, V. J.; Smith, T.
E.; Fitch, D. M.; Cho, P. S. Angew. Chem., Int. Ed. 2000, 39, 2533-2536.
(g) Evans, D. A.; Fitch, D. M. Angew. Chem., Int. Ed. 2000, 39, 2536-
2540.
(17) Part of this work has been described in a preliminary report: Sun, X.;
Janvier, P.; Zhao, G.; Bienayme´, H.; Zhu, J. Org. Lett. 2001, 3, 877-880.
(18) (a) Michael, P.; Pattenden, G. Angew. Chem., Int. Ed. Engl. 1993, 32, 1-23.
(b) Garson, M. Chem. ReV. 1993, 93, 1699-1733. (c) Davisdon, B. S.
Chem. ReV. 1993, 93, 1771-1791. (d) Wipf, P. Chem. ReV. 1995, 95,
2115-2134. (e) Faulkner, D. J. Nat. Prod. Rep. 1999, 16, 155-198.
9
J. AM. CHEM. SOC. VOL. 124, NO. 11, 2002 2561