1230
A. K. Ghosh, J.-H. Kim / Tetrahedron Letters 42 (2001) 1227–1231
the chiral template in the transition state. The choice of
benzyl side chain in the chiral auxiliary is not critical
since L-valinol derived propionyl ester enolate also pro-
vided comparable syn-diastereoselectivity (syn:anti ratio
>99:1; 74% isolated yield) with benyloxyacetaldehyde
under similar reaction conditions.
(f) Danda, H.; Hansen, M. M.; Heathcock, C. H. J. Org.
Chem. 1990, 55, 173; (g) Corey, E. J.; Kim, S. S. J. Am.
Chem. Soc. 1990, 112, 4976; (h) Corey, E. J.; Kim, S. S.
Tetrahedron Lett. 1990, 31, 3715; (i) Meyers, A. G.;
Widdowson, K. L. J. Am. Chem. Soc. 1990, 112, 9672; (j)
Duthaler, R. O.; Herold, P.; Helfer, S.-W.; Riediker, M.
Helv. Chim. Acta 1990, 73, 659; (k) Walker, M. A.;
Heathcock, C. H. J. Org. Chem. 1991, 56, 5747; (l)
Braun, M.; Sacha, H. Angew. Chem., Int. Ed. Engl. 1991,
30, 1318; (m) Gennari, C.; Moresca, D.; Vieth, S.;
Vulpetti, A. ibid 1993, 32, 1618; (n) Paterson, I.; Wren, S.
P. J. Chem. Soc., Chem. Commun. 1993, 1790; (o) Abiko,
A.; Liu, J.-F.; Masamune, S. J. Am. Chem. Soc. 1997,
119, 2586 and references cited therein.
In conclusion, we devised a chelation controlled ester
derived Ti-enolate based highly diastereoselective (82–
98% de) syn-aldol reaction with bidentate oxyalde-
hydes. The methodology is convenient since inexpensive
reagents and readily available optically active chiral
auxiliaries were utilized. The scope of the reaction can
also be extended to other bidentate aldehydes. Further
studies including synthetic applications are in progress.
4. (a) Ghosh, A. K.; Onishi, M. J. Am. Chem. Soc. 1996,
118, 2527; (b) Ghosh, A. K.; Fidanze, S.; Hussain, K. A.
Tetrahedron Lett. 1997, 38, 7171.
Acknowledgements
5. Our tentative assignment of the Z-enolate geometry is
1
based upon a H NOESY (CD2Cl2) experiment in which
a weak NOE was observed between the vinyl proton (HC)
and the methylene protons (HA and HB). The absence of
NOE between the vinyl methyl and the same methylene
Financial support for this work was provided by the
National Institutes of Health (GM 55600).
1
protons further supported this assignment. H NMR (3,
R=Me, CDCl3): l 1.57 (d, 1H, J=7 Hz), 2.38 (s, 3H),
2.76 (dd, 1H, J=9.4, 13.6 Hz), 3.10 (dd, 1H, J=5.5, 13.6
Hz), 3.16 (dd, 1H, J=6.5, 8.5 Hz), 3.68 (dd, 1H, J=2.1,
8.5 Hz), 4.73 (q, 1H, J=7 Hz), 7.17–7.30 (m, 7H), 7.65
(d, 2H, J=8.2 Hz).
References
1. (a) Arya, P.; Quin, H. Tetrahedron 2000, 56, 917; (b)
Franklin, A. S.; Paterson, I. Contemp. Org. Synth. 1994,
317; (c) Kim, B.-M.; Williams, S. F.; Masamune, S. In
Comprehensive Organic Synthesis; Trost, B. M.; Fleming,
I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, Chapter
1.7, p. 239; (d) Heathcock, C. H. In Asymmetric Synthe-
sis; Morrision, J. D., Ed.; Academic Press: New York,
1984; Vol. 3, p. 111 and references cited therein.
6. All new compounds gave satisfactory spectroscopic and
analytical results. Preparation of syn-aldol 5a: To a
stirred solution of propionate ester 2a (550 mg, 1.52
mmol) in CH2Cl2 (15 ml) at 0°C was added a 1 M
solution of TiCl4 (1.6 ml, 1.6 mmol) dropwise under a N2
atmosphere. The resulting solution was stirred for an
additional 15 min. To this solution was added N,N-diiso-
propylethylamine (0.8 ml, 4.6 mmol) in a dropwise man-
ner. The mixture was stirred for 1 h at 0°C and then was
warmed to 23°C. In a separate flask, to a stirred solution
of benzyloxyacetaldehyde (457 mg, 3.04 mmol) in CH2Cl2
(20 ml) at −78°C under a N2 atmosphere, was added a 1
M solution of TiCl4 (3.2 ml, 3.2 mmol). After stirring for
10 min, the above enolate solution was added to this
aldehyde solution dropwise via syringe over 8 min. The
mixture was stirred at −78°C for 1.5 h before quenching
by aqueous NH4Cl. The resulting mixture was warmed to
23°C and the layers were separated. The aqueous layer
was extracted twice with CH2Cl2. The combined organic
layers were washed with brine, dried over anhydrous
Na2SO4, and concentrated under reduced pressure to
afford the aldol products. Silica gel chromatography of
the crude product yielded the syn aldol product 5a (620
mg, 80%) as a viscous oil. [h]2D3 −4.9 c 1.2, CHCl3; 1H
NMR (500 MHz, CDCl3): l, 1.19 (d, 3H, J=7.1 Hz),
2.41 (s, 3H), 2.68 (m, 1H), 2.76 (d, 2H, J=7.2 Hz), 3.17
(d, 1H, J=4.0 Hz), 3.53 (d, 2H, J=5.8 Hz), 3.72 (m, 1H),
3.97–4.05 (m, 2H), 4.20 (m, 1H), 4.57 (dd, 2H, J=11.8,
20.5 Hz), 5.58 (d, 1H, J=8.1 Hz), 7.03–7.05 (m, 2H),
7.20–7.25 (m, 5H), 7.31–7.39 (m, 5H), 7.68 (d, 2H, J=
8.3); 13C NMR (125 MHz, CDCl3) l, 11.5, 21.9, 38.9,
42.6, 54.5, 65.4, 71.1, 72.1, 73.8, 127.2, 127.4, 128.3,
128.9, 129.1, 129.7, 130.1, 136.9, 138.0, 138.3, 143.7,
2. For syn-aldol reactions, see: (a) Masamune, S.; Bates, G.
S.; Corcoran, J. W. Angew. Chem., Int. Ed. Engl. 1977,
16, 585; (b) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am.
Chem. Soc. 1981, 103, 2127; (c) Roder, H.; Helmchen, G.;
Peters, E.-M.; von Schmering, H.-G. Angew. Chem., Int.
Ed. Engl. 1984, 23, 898; (d) Masamune, S.; Choy, W.;
Peterson, J. S.; Sita, L. R. ibid 1985, 24, 1; (e) Jackson, R.
F. W.; Sutter, M. A.; Seebach, D. Liebigs Ann. Chem.
1985, 2313; (f) Paterson, I.; Lister, M. A.; McClure, C. K.
Tetrahedron Lett. 1986, 27, 4787; (g) Corey, E. J.;
Imwinkelreid, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem.
Soc. 1989, 111, 5493; (h) Oppolzer, W.; Blagg, J.;
Rodriguez, I.; Walther, E. J. ibid 1990, 112, 2767; (i)
Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F.
ibid 1991, 113, 1047; (j) Ghosh, A. K.; Duong, T. T.;
McKee, S. P. J. Chem. Soc., Chem. Commun. 1992, 1673;
(k) Abiko, A.; Liu, J.-F.; Masamune, S. J. Org. Chem.
1996, 61, 2590; (l) Sulikowski, G. A.; Lee, W.-M.; Jin, B.;
Wu, B. Org. Lett. 2000, 2, 1439; (m) Roush, W. R.;
Pfeifer, L. A. Org. Lett. 2000, 2, 859 and references cited
therein.
3. For anti-aldol reactions, see: (a) Meyers, A. I.;
Yamamoto, Y. Tetrahedron 1984, 40, 2309; (b) Helm-
chen, G.; Leikauf, U.; Taufer-Knopfel, I. Angew. Chem.,
Int. Ed. Engl. 1985, 24, 874; (c) Gennari, C.; Bernardi, A.;
Colombo, L.; Scolastico, C. J. Am. Chem. Soc. 1985, 107,
5812; (d) Oppolzer, W.; Marco-Contelles, J. Helv. Chim.
Acta 1986, 69, 1699; (e) Masamune, S.; Sato, T.; Kim, B.
M.; Wollman, T. A. J. Am. Chem. Soc. 1986, 108, 8279;
175.1; IR (neat): 3508, 3282, 1731, 1328, 1159 cm−1
.