Mn3O4 Nanoparticle Catalyzed Synthesis of 3,4-Disubstituted Coumarins
lunkhe, Tetrahedron Lett. 2001, 42, 9285–9287; c) G. P. Rom-
anelli, D. Bennardi, D. M. Ruiz, G. Baronetti, H. J. Thomas,
J. C. Autino, Tetrahedron Lett. 2004, 45, 8935–8939; d) H.
Sharghi, M. Jokar, Heterocycles 2007, 71, 2721–2733; e) M. S.
Manhas, S. N. Ganguly, S. Mukherjee, A. K. Jain, A. K. Bose,
Tetrahedron Lett. 2006, 47, 2423–2425; f) G. V. M. Sharma, J.
Janardhan Reddy, P. Sree Lakshmi, P. Radha Krishna, Tetrahe-
dron Lett. 2005, 46, 6119–6121; g) B. Tyagi, M. K. Mishra,
R. V. Jasra, J. Mol. Catal. A 2007, 276, 47–56; h) S. Sethna, R.
Phadke, Org. React. 1953, 7, 1–58.
lyst loading, high activity, and good recyclability. Further
application of this heterogeneous catalyst to other reactions
is in progress in our laboratory.
Experimental Section
Preparation of Mn3O4 Nanoparticles:[14] Mn(OAc)2·4H2O (0.50 g)
and DMSO (30 mL) were added into a 30-mL, Teflon-lined stain-
less steel autoclave. After Mn(OAc)2·4H2O was dissolved in DMSO
[6] a) B. J. Donnelly, D. M. X. Donnelly, A. M. O. Sullivan, Tetra-
hedron 1968, 24, 2617–2622; b) J. R. Johnson, Org. React. 1942,
1, 210–265.
[7] a) N. Cairns, L. M. Harwood, D. P. Astles, J. Chem. Soc.,
Chem. Commun. 1986, 1264–1266; b) S. K. Chattopadhyay, T.
Biswas, K. Neogi, Chem. Lett. 2006, 35, 376–377; c) K. C. Ma-
jumdar, P. Debnath, P. K. Maji, Tetrahedron Lett. 2007, 48,
5265–5268.
with stirring, the autoclave was sealed. Thermal treatment was car-
ried out at 120 °C for 6 h, and then the autoclave was cooled to
room temperature. Water was added into the solution, and the
nanoparticles were precipitated after keeping it at room tempera-
ture for 2 h in air. The powder was centrifuged at ca. 10000 rpm
for 10 min, then washed with water and anhydrous ethanol (3ϫ)
and dried at 60 °C for 6 h in vacuo. Typical XRD and XPS patterns
of the nanoparticles are shown in Figures S2a and S3a (see the
Supporting Information). All the strong and shape diffraction
peaks are consistent with the reference JCPDS 24–0734, which are
indexed to the tetragonal structure of Mn3O4.
[8] a) F. Bigi, L. Chesini, R. Maggi, G. Sartori, J. Org. Chem. 1999,
64, 1033–1035; b) A. Song, X. Wang, K. S. Lam, Tetrahedron
Lett. 2003, 44, 1755–1758.
[9]
R. L. Shirner, Org. React. 1942, 1, 1–37.
[10]
a) Y. Takeuchi, N. Ueda, K. Uesugi, H. Abe, H. Nishioka,
T. Harayama, Heterocycles 2003, 59, 217–224; b) D. Maes, S.
Vervisch, S. Debenedetti, C. Davio, S. Mangelinckx, N. Giubel-
lina, N. De Kimpe, Tetrahedron 2005, 61, 2505–2511; c) S.
Hesse, G. Kirsch, Tetrahedron Lett. 2002, 43, 1213–1215; d) J.-
C. Tsai, S.-R. Li, M. Y. Chiang, L.-Y. Chen, P.-Y. Chen, Y.-F.
Lo, C.-H. Wang, C.-N. Lin, E.-C. Wang, J. Org. Chem. 2009,
74, 8798–8801; e) B. M. Trost, F. D. Toste, J. Am. Chem. Soc.
1996, 118, 6305–6306; f) C. Jia, D. Piao, J. Oyamada, W. Lu,
T. Kitamura, Y. Fujiwara, Science 2000, 287, 1992–1995; g)
B. C. Ranu, R. Jana, Eur. J. Org. Chem. 2006, 3767–3770; h)
C. B. Kelly, C. Lee, N. E. Leadbeater, Tetrahedron Lett. 2011,
52, 263–265.
General Working Procedure for the Preparation of 3a–o: The Mn3O4
nanoparticles (22.9 mg, 10 mol-%) and the appropriate 2-(hy-
droxymethyl) phenol (1 equiv.) in DMF (2 mL) were heated at
80 °C for 6 h. Then, the β-keto ester (3 mmol) and K2CO3 (3 mmol)
were added to the mixture. The mixture was stirred for 6 h. After
completion of the reaction, the catalyst was separated by centrifu-
gation. Then, the solution was extracted with ethyl acetate
(3ϫ20 mL). The combined organic layer was washed with water
and brine and dried with anhydrous sodium sulfate. The organic
phase was concentrated under vacuum and purified with column
chromatography on silica gel to afford the pure product.
[11] a) A. Ramani, B. M. Chanda, S. Velu, S. Sivasanker, Green
Chem. 1999, 1, 163–165; b) C. R. Reddy, J. Vijaykumar, R.
Grée, Synthesis 2010, 21, 3715–3723; c) D. V. Kadnikov, R. C.
Larock, J. Org. Chem. 2003, 68, 9423–9432; d) D. V. Kadnikov,
R. C. Larock, Org. Lett. 2000, 2, 3643–3646; e) K. Taksande,
D. S. Borse, P. Lokhande, Synth. Commun. 2010, 40, 2284–
2290; f) K. Nakai, T. Kurahashi, S. Matsubara, J. Am. Chem.
Soc. 2011, 133, 11066–11068; g) K. H. Park, I. G. Jung, Y. K.
Chung, Synlett 2004, 14, 2541–2544; h) L. Zhang, T. Meng, R.
Fan, J. Wu, J. Org. Chem. 2007, 72, 7279–7286.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details; characterization data; and the 1H NMR,
13C NMR, and mass spectra of all compounds.
Acknowledgments
We are grateful for the financial support of the National Science
Foundation of China (No. J1030412, 20772118, 20932002,
20972144, 21172205, 90813008), Ministry of Science and Technol-
ogy (010CB912103), and the Chinese Academy of Sciences.
[12] a) D. Astruc, Nanoparticles and Catalysis, Wiley-VCH,
Weinheim, 2008; b) N. Yan, C. Xiao, Y. Kou, Coord. Chem.
Rev. 2010, 254, 1179–1218; c) V. Polshettiwar, R. S. Varma,
Green Chem. 2010, 12, 743–754; d) F. Alonso, P. Riente, M.
Yus, Acc. Chem. Res. 2011, 44, 379–391; e) D. Astruc, F. Lu,
J. R. Aranzaes, Angew. Chem. 2005, 117, 8062–8082; Angew.
Chem. Int. Ed. 2005, 44, 7852–7872; f) M. Niederberger, G.
Garnweitner, Chem. Eur. J. 2006, 12, 7282–7302; g) A. Schatz,
O. Reiser, W. J. Stark, Chem. Eur. J. 2010, 16, 8950–8967.
[13] a) Y. Wang, D. P. Zhu, L. Tang, S. J. Wang, Z. Y. Wang, Angew.
Chem. 2011, 123, 9079–9083; Angew. Chem. Int. Ed. 2011, 50,
8917–9821; b) Y. Wang, G. H. Ouyang, J. T. Zhang, Z. Y.
Wang, Chem. Commun. 2010, 46, 7912–7914; c) J. T. Zhang,
C. M. Yu, S. J. Wang, Z. Y. Wang, Chem. Commun. 2010, 46,
5244–5246; d) J.-T. Zhang, C.-M. Yu, S.-J. Wang, Z.-Y. Wang,
Prog. Chem. 2010, 22, 1482–1489.
[1] R. O. Kennedy, R. D. Zhorenes, Coumarins. Biology, Applica-
tions and Mode of Action, John Wiley and Sons, Chichester,
1997.
[2] M. Zabradnik, The Production and Application of Fluorescent
Brightening Agents, John Wiley and Sons, New York, 1992.
[3] a) R. D. H. Murray, J. Mendez, S. A. Brown, The Natural Cou-
marins: Occurrence, Chemistry and Biochemistry, John Wiley
and Sons, New York, 1982; H. Hattori, Chem. Rev. 1995, 95,
537–558.
[4] a) O. Thastrup, B. Fjalland, J. Lemmich, Acta Pharmacol. Tox-
icol. 1983, 52, 246–253; b) J. Wu, Z. Yang, R. Fathi, Q. Zhu,
L. Wang, WO2003097628-A, 2003; c) L. W. L. Woo, A. Pu-
rohit, B. Malini, M. J. Reed, B. V. L. Potter, Chem. Biol. 2000,
7, 773–791; d) D. Barlocco, Drug Discovery Today 2003, 8,
1051–1052; e) G. R. Madhavan, V. Balraju, B. Mallesham, R.
Chakrabarti, V. B. Lohray, Bioorg. Med. Chem. Lett. 2003, 13,
2547–2551; f) C.-J. Wang, Y.-J. Hsieh, C.-Y. Chu, Y.-L. Lin, T.-
H. Tseng, Cancer Lett. 2002, 183, 163–168.
[14] W. G. Fan, L. Gao, J. Inorg. Mater. 2006, 21, 789–792.
[15] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Hand-
book of X-ray Photoelectron Spectroscopy, Perkin–Elmer Cor-
poration, Minnesota, 1992.
[5] a) M. C. Laufer, H. Hausmann, W. F. Hölderich, J. Catal.
2003, 218, 315–320; b) M. K. Potdar, S. S. Mohile, M. M. Sa-
Received: October 30, 2011
Published Online: December 9, 2011
Eur. J. Org. Chem. 2012, 480–483
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
483