204
R. N. Warrener et al.
LETTER
minor byproduct in this reaction. Formation of 23 in-
volves a hydrolysis step and preliminary evidence indi-
cates that this probably occurred in the course of
chromatographic workup.9 Interestingly, the de(meth-
oxymethylation) step becomes the major pathway in N-
methoxymethyl XNY[3]polynorbornanes where intramo-
lecular cyclisation is no longer available and has been
used to prepare CN-bridged compounds where X or
Y = isopropylidene (see also formation of 27, Scheme 6).8
Acknowledgement
We thank Mr Malcolm Hammond for conducting some of the
developmental work on the synthesis of N-(methoxymethyl)aziri-
dines. GS and MH thank Central Queensland University for the
award of a CQU PhD scholarship.
References and Notes
(1) a) Visnick, M.; Battiste, M. A. J. Chem. Soc., Chem. Commun
1985, 1621-1622. We have found difficulty in reproducing the
results for the addition of DMAD with bis-(N-pyrrolyl)-
methane 1. b) For theoretical treatments of this reaction, see
Domingo, L. R.; Picher, M. T.; Arno, M.; Andres, J.; Safont,
V. S. Theochem. 1998, 426, 257-262. c) Domingo, L. R.;
Arno, M.; Andres, J. J. Am. Chem. Soc. 1998, 120, 1617-1618.
(2) Warrener, R. N.; Schultz, A. C.; Butler, D. N.; Wang, S.;
Mahadevan, I. B.; Russell, R. A. Chem. Commun. 1997,
1023-1024.
(3) Applications of 1,3-dipolar coupling to form [n]polynor-
bornane scaffolds: a) Butler, D. N.; Hammond, M. L. A.;
Johnston, M. R.; Sun, G.; Malpass, J. R.; Fawcett, J.;
Warrener, R. N. Org. Lett. 2000, 2, 721-724. b) Malpass, J. R.;
Butler, D. N.; Johnston, M. R.; Hammond, M. L. A.;
Warrener, R. N. Org. Lett. 2000, 2, 725-728. c) Schultz, A. C.;
Kelso, L. S.; Johnston, M. R.; Warrener, R. N.; Keene, F. R.
Inorg. Chem. 1999, 38, 4906. d) Warrener, R. N.; Schultz, A.
C.; Johnston, M. R.; Gunter, M. J. J. Org. Chem. 1999, 64,
4218. e) Warrener, R. N.; Margetic, D.; Amarasekara, A. S.;
Russell, R. A. Org. Lett. 1999, 1, 203. f) Warrener, R. N.;
Butler, D. N.; Russell, R. A. Synlett 1998, 556. g) Warrener,
R. N.; Margetic, D.; Amarasekara, A. S.; Foley, P. J.; Butler,
D. N.; Russell, R. A. Tetrahedron Lett. 1999, 40, 4111-4114.
h) Warrener, R. N.; Margetic, D.; Russell, R. A. Article 014,
Electronic Conference on Heterocyclic Chemistry ’98 1998,
H. S. Rzepa and O. Kappe (Eds), Imperial College Press.
i) Warrener, R. N.; Butler, D. N.; Russell, R. A. Synlett 1998,
566. j) Butler, D. N.; Malpass, J. R.; Margetic, D.; Russell, R.
A.; Sun, G.; Warrener, R. N. Synlett 1998, 588. k) Sun, G.;
Butler, D. N.; Warrener, R. N.; Margetic, D.; Malpass, J. R.
Article 062, Electronic Conference on Heterocyclic
Chemistry ’98 1998, H. S. Rzepa and O. Kappe (Eds), Imperial
College Press.
As mentioned in the introduction, direct addition to the -
bond of alkene 2 has not proved to be a fruitful route to
functionalised N,N’-methano-bridged [n]polynorbor-
nanes. Limited success was forthcoming from the reaction
of the aziridine 24 with the pincer adduct 2, however, the
1:1-adduct (m/z = 813.2475) that is formed lacks the ole-
finic protons expected for a product derived directly from
2. The 1H and 13C NMR spectral data support structure 25
(Scheme 6) which is considered to be derived from addi-
tion to the domino adduct 3, generated from 2 under the
thermal reaction conditions. A similar reaction of the N-
(methoxymethyl)aziridine 10a with 2 also follows this
path and leads to the formation of 27 (m/z = 607.1882), a
deprotected form of the initially-formed adduct 26. Disap-
pointingly, attempts to form a product with four N-bridges
by reaction of aziridine 10b with 2 were not rewarding.10
(4) Margetic, D.; Russell, R. A.; Warrener, R. N., unpublished.
(5) Butler, D. N.; Malpass, J. R.; Margetic, D.; Russell, R. A.;
Sun, G.; Warrener, R. N. Synlett 1998, 588-589.
(6) Ohwada, T.; Achiwa, T.; Okamoto, I.; Shudo, K. Tetrahedron
Lett. 1998, 39, 865-869.
Rare example of pincer diene 3 acting as a dipolarophile in CN3-
[4]polynorbornane formation
(7) Malpass, J. R.; Fawcett, J., unpublished.
(8) G. Sun PhD Thesis, Central Queensland University, Sept
2000.
Scheme 6
(9) Bohme, H; Viehe, H. G. "Iminium Salts in Organic
Chemistry" Adv. Org. Chem. 1976, Vol 9.
In conclusion, this ability to prepare N,N’-methano-
bridged compounds either by direct cycloaddition or by
neighbouring group participation opens up entry to a ver-
satile range of entirely new hetero-bridged [n]polynorbor-
nane frames. Such scaffolds can be used to modify
topology since molecular modelling shows that they are
less curved than the compounds lacking the N,N-methano-
bridge.11 The N-bridges are locked into a geometry corre-
sponding to the highly disfavoured syn,syn-invertomer
geometry of diazasesquinorbornanes, a feature which can
be exploited in the molecular design of polarofacial scaf-
folds. The neighbouring group participation route is not
restricted to N-C-N bridges and other examples will be re-
ported in due course.
(10) Reactions involving aziridines containing the N-Z-bridge as in
10b often fail with less-reactive dipolarophiles owing to the
competing fragmentation of the dipolar intermediate, e.g. 11b
to form N-Z isoindole and the related N-substituted pyrrole.
(11) Warrener, R. N. Eur J. Org. Chem. 2000, 3363-3380.
(12) Representative spectral details of new compounds: 10b 1H
NMR (CDCl3 at 60 °C) 2.36 (2H, s, H9,13), 3.50 (3H, s,
OMe), 3.77 (6H, s, CO2Me 2), 4.20 (2H, s, NCH2O), 5.03
(2H, s, CH2Ph), 5.76 (2H, s, H1,8), 7.16-7.44 (9H, m,
aromatic). 13C (CDCl3 at 60 °C) : 52.9, 57.7, 61.3, 62.1, 67.6,
80.8, 112.9, 121.3, 127.3, 128.2, 136.9, 156.4, 167.2, 183.6.
HRMS m/z calcd for C26H27N2O7: 478.1740, found 478.1721.
17: mp 207-208 °C 1H NMR (CDCl3) (ppm): 1.45 (1H, d,
J = 8.9 Hz), 1.87 (2H, s), 2.07 (2H, s), 3.10 (2H, s), 3.20 (1H,
Synlett 2001, No. 2, 202–205 ISSN 0936-5214 © Thieme Stuttgart · New York