Communication
RSC Advances
˜
BF3$Et2O, which resulted into the regio and stereospecic ring
opening of aziridine 10 and in situ re-aziridination to afford
intermediate 2 in 80% yield (Scheme 2). Since the conversion of
intermediate 2 to aziridine 11 and from aziridine 11 to tamiu 1
are reported in the literature,4a,b,14 this constitutes for the formal
synthesis of tamiu 1.
2 A. Graul, P. A. Leeson and J. Castaner, Drugs Future, 1999, 24,
1189.
3 (a) C. U. Kim, W. Lew, M. A. Williams, H. Liu, L. Zhang,
S. Swaminathan, N. Bischoerger, M. S. Chen,
D. B. Mendel, C. Y. Tai, W. G. Laver and R. C. Stevens, J.
Am. Chem. Soc., 1997, 119, 681; (b) C. U. Kim, W. Lew,
M. A. Williams, H. Wu, L. Zhang, X. Chen, P. A. Escarpe,
D. B. Mendel, W. G. Laver and R. C. Stevens, J. Med. Chem.,
1998, 41, 2451.
4 (a) M. Karpf and R. Trussardi, J. Org. Chem., 2001, 66, 2044;
(b) J. C. Rohloff, K. M. Kent, M. J. Postich, M. W. Becker,
H. H. Chapman, D. E. Kelly, W. Lew, M. S. Louie,
L. R. McGee, E. J. Prisbe, L. M. Schultze, R. H. Yu and
L. Zhang, J. Org. Chem., 1998, 63, 4545; (c) S. Abrecht,
P. Harrington, H. Iding, M. Karpf, R. Trussardi, B. Wirz
and U. Zutter, Chimia, 2004, 58, 621.
We would like to stress that although synthesis of tamiu has
been earlier reported from D-mannitol,10d,e it required 16 and 18
steps respectively. Our synthesis requires only 13 purication
steps. It may be further pointed out that the previous two syntheses
in addition to chiral pool strategy employ catalytic asymmetric
dihydroxylation to install additional chirality. Our synthesis on the
contrary exploits the existing chiral center of mannitol and utilizes
it for introducing the desired chirality without resorting any
further asymmetric catalysis. In addition to this our synthesis does
not generate undesired isomers, as is the case with other two
syntheses, except 3a which in turn can be readily transformed to
the desired isomer 3b. The aziridine intermediate 11 can be readily
transformed to tamiu by azide free route following the procedure
described in ref. 4a, in 5.5% overall yield which is better than the
one reported by Mandai et al.10d
articles.view/articleNo/23583/title/Getting-around-u-drug-
shortage/.
6 (a) J. Magano, Chem. Rev., 2009, 109, 4398; (b) J. Magano,
Tetrahedron, 2011, 67, 7875.
7 (a) Y. Fukuta, T. Mita, N. Fukuda, M. Kanai and M. Shibasaki,
J. Am. Chem. Soc., 2006, 128, 6312; (b) T. Mita, N. Fukuda,
F. X. Roca, M. Kanai and M. Shibasaki, Org. Lett., 2007, 9,
259; (c) K. Yamatsugu, S. Kamijo, Y. Suto, M. Kanai and
M. Shibasaki, Tetrahedron Lett., 2007, 48, 1403; (d)
K. Alagiri, M. Furutachi, K. Yamatsugu, N. Kumagai,
T. Watanabe and M. Shibasaki, J. Org. Chem., 2013, 78, 4019.
8 Y. Y. Yeung, S. Hong and E. J. Corey, J. Am. Chem. Soc., 2006,
128, 6310.
Conclusions
In conclusion a novel, practical and formal synthesis of tamiu
has been accomplished starting with inexpensive and abundant
chiral material viz. D-mannitol in 5.5% overall yields. The key
building block cis-aziridine is utilised in the synthesis to x the
desired stereocenters of the neuraminidase inhibitor drug osel-
tamivir phosphate. This notable synthetic attempt involved Wittig
olenation and Barbier reaction to access acyclic diene precursor
and which was converted to cyclohexene, the core skeleton of
9 H. Ishikawa, T. Suzuki and Y. Hayashi, Angew. Chem., Int. Ed.,
2009, 48, 1304.
tamiu by ring closing metathesis (RCM). The undesired diaste- 10 (a) X. Cong and Z. J. Yao, J. Org. Chem., 2006, 71, 5365; (b)
reomer of Barbier reaction was fruitfully converted into the
desired isomer using Mitsunobu conditions. The synthetic route
is concise, involving inexpensive reagents throughout the
synthesis and involves high yielding reaction steps.
J. J. Shie, J. M. Fang, S. Y. Wang, K. C. Tsai, Y. S. E. Cheng,
A. S. Yang, S. C. Hsiao, C. Y. Su and C. H. Wong, J. Am.
Chem. Soc., 2007, 129, 11892; (c) H. Osato, I. L. Jones,
A. Chen and C. L. L. Chai, Org. Lett., 2010, 12, 60; (d)
T. Mandai and T. Oshitari, Synlett, 2009, 783; (e) J. S. Ko,
J. E. Keum and S. Y. Ko, J. Org. Chem., 2010, 75, 7006; (f)
T. Oshitari and T. Mandai, Synlett, 2009, 787; (g) J. Weng,
Y. B. Li, R. B. Wang, F. Q. Li, C. Liu, A. S. C. Chan and
G. Lu, J. Org. Chem., 2010, 75, 3125.
Acknowledgements
PNC & LBK thank to CSIR New Delhi, India for SRF. We also
thank U. R. Kalkote & H. B. Borate for helpful discussion and
SPC thanks CSIR, INDIA and ORIGIN for research funding.
11 S. Gabriel, Chem. Ber., 1888, 21, 1049.
12 A. L. Williams and J. N. Johnston, J. Am. Chem. Soc., 2004,
126, 1612.
Notes and references
´
¨
´
13 P. Tapolcsanyi, J. Woling, E. Mernyak and G. Schneider,
1 R. G. Webster, A. S. Monto, T. J. Braciale and R. A. Lamb,
Monatshee fur Chemie, 2004, 135, 1129.
Textbook of Inuenza, Oxford, UK: Blackwell Science, 1998, 14 K. Ishiwata, S. Terashima and K. Ujita, EP1229022 B1, or
pp. 219–264.
EP1229022, A4 or EP1229022 A1, Aug 7, 2002.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 11417–11419 | 11419