S. B. Jadhav, U. Ghosh / Tetrahedron Letters 48 (2007) 2485–2487
2487
9. Vilasmaier, E.; Dittrich, K. H.; Sprugel, W. Tetrahedron
¨
MTM ester (Table 1, entry 8) in very good yield. p-
Nitrobenzoic acid15 and an d-keto acid (Table 1, entries
4 and 9) also gave the corresponding MTM esters in
excellent yields. Contrary to Swern’s observation,13
12-hydroxystearic acid, on treatment with 2 equiv of
reagents, gave the corresponding keto methylthiomethyl
ester in 80% yield (Table 1, entry 10) along with ꢀ15–
20% of a keto acid where only the hydroxy group had
been oxidised. When this experiment was carried out
according to the reported conditions by Swern13 (at
À10 ꢁC), similar results to those above were obtained.
Lett. 1974, 3601–3604.
10. Pfitzner, K. E.; Moffatt, J. G. J. Am. Chem. Soc. 1965, 87,
5661–5670.
11. Ho, T.-L. Synth. Commun. 1979, 9, 267–270.
12. Corey, E. J.; Kim, C. U. Tetrahedron Lett. 1974, 287–
290.
13. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem.
1978, 43, 2480–2482.
14. Spectral data on methylthiomethyl-2-formyl-4,5-di-
methoxybenzoate 5: mp 90–92 ꢁC, 1H NMR (300 MHz,
CDCl3): d 2.33 (3H, s, CH3S), 3.99 (3H, s, OCH3), 4.00
(3H, s, OCH3), 5.44 (2H, s, CH2S), 7.47 (1H, s, Ar), 7.51
(1H, s, Ar), 10.66 (1H, s, CHO); 13C NMR (125 MHz,
CDCl3): d 190.97, 165.51, 152.39, 152.17, 131.35, 125.59,
In summary, we report a very mild and effective proto-
col using Swern’s reagent for the synthesis of MTM
esters of aliphatic, aromatic, unsaturated carboxylic
and N-protected amino acids.
112.60, 109.73, 69.77, 56.37, 56.31, 15.89; IR (KBr, cmÀ1
)
1721, 1675, 1590, 1521, 1359, 1287, 1210, 1134; MS (CI,
70 eV) m/z 271 (M++H); HRMS calcd for C12H14O5S,
270.0556; found, 270.0556; Anal. Calcd for C12H14O5S: C,
53.32; H, 5.22; S, 11.86. Found: C, 53.47; H, 5.18; S,
11.58.
In a typical procedure, DMSO (1.56 ml, 22 mmol) in
dichloromethane (10 ml) was added dropwise to a
stirred solution of oxalyl chloride (0.96 ml, 11 mmol)
in dichloromethane (15 ml) at À60 to À65 ꢁC under an
inert atmosphere. After 5 min, the carboxylic acid (solid/
neat) (10 mmol) was added to the reaction mixture
and stirring was continued for 15 min. Triethylamine
(6.97 ml, 50 mmol) was added dropwise and after
5 min, the reaction mixture was allowed to attain room
temperature and then diluted with dichloromethane
(20 ml). Water (30 ml) was added to the reaction mix-
ture and the aqueous layer was extracted with dichloro-
methane (50 ml). The combined organic extract was
washed with water (30 ml), then brine (30 ml) and dried
over anhydrous sodium sulfate. The solvent was evapo-
rated and the residue was purified by silica gel column
chromatography/crystallization. All the products17 have
15. (a) Kukla, M. J. Tetrahedron Lett. 1982, 23, 4539–4540;
(b) Sumio, I.; Seiji, A.; Kenjiro, T. Yuki Gosei Kagaku
Kyokaishi 1968, 26, 375–380; Sumio, I.; Seiji, A.; Kenjiro,
T. Chem. Abstr. 1968, 69, 35641.
16. Claus, P.; Vavra, N.; Schilling, P. Monatsh. Chem. 1971,
102, 1072–1080.
17. Spectroscopic data for novel products: (Table 1, entry 2):
1
Oil; H NMR (300 MHz, CDCl3): d 2.31 (3H, s, CH3S),
3.91 (3H, s, OCH3), 5.36 (2H, s, CH2S), 6.97–7.02 (2H, m,
Ar), 7.48 (1H, t, J = 6 Hz, Ar), 7.83 (1H, d, J = 6 Hz, Ar);
13C NMR (125 MHz, CDCl3): d 165.69, 159.42, 133.93,
131.83, 120.15, 119.54, 112.04, 68.49, 55.99, 15.48; MS
(EI, 70 eV), m/z 212 (M+); IR (neat, cmÀ1) 1731, 1600,
1491, 1288, 1238; HRMS calcd for C10H12O3S, 212.0514;
found, 212.0515; (Table 1, entry 6): oil; 1H NMR
(300 MHz, CDCl3): d 2.31 (3H, s, CH3S), 5.38 (2H, s,
CH2S), 5.39 (1H, d, J = 9 Hz), 5.87 (1H, d, J = 18 Hz),
6.75 (1H, dd, J = 18, 9 Hz), 7.47 (2H, d, J = 8.4 Hz, Ar),
8.02 (2H, d, J = 8.4 Hz, Ar); 13C NMR (75 MHz, CDCl3):
d 166.04, 142.29, 135.97, 130.08, 128.91, 126.19, 116.76,
68.80, 15.53; IR (neat, cmÀ1) 1720, 1607, 1260, 1087; MS
(EI, 70 eV) m/z 208 (M+); Anal. calcd for C11H12O2S: C,
63.43; H, 5.81; S, 15.40; found C, 63.29; H, 6.00; S, 15.72;
(Table 1, entry 8): oil turns solid on keeping, mp 40–42 ꢁC;
1H NMR (300 MHz, CDCl3): d 2.25 (3H, s, CH3S), 4.02
(2H, d, J = 5.4 Hz, NHCH2CO), 5.12 (2H, S, OCH2Ph),
5.24 (2H, s, CH2S), 5.34 (1H, bs, NH), 7.35 (5H, s, Ar);
13C NMR (75 MHz, CDCl3): 169.86, 156.27, 136.16,
128.57, 128.25, 128.14, 69.42, 67.19, 42.89, 15.51; IR
(neat, cmÀ1) 1722, 1525, 1260, 1171; HRMS calcd for
C12H15NO4S, 269.0709; found, 269.0710; (Table 1, entry
9): mp 50–52 ꢁC; 1H NMR (300 MHz, CDCl3) d 2.06–2.16
(2H, m, PhCOCH2CH2), 2.24 (3H, s, CH3S), 2.50 (2H, t,
J = 7.2 Hz, PhCOCH2), 3.08 (2H, t, J = 7.2 Hz,
CH2CH2CO), 5.15 (2H, s, CH2S), 7.44–7.50 (2H, m, Ar),
7.55–7.61 (1H, m, Ar), 7.96–7.99 (2H, m, Ar); 13C NMR
(75 MHz, CDCl3): d 199.31, 172.92, 136.77, 133.14,
128.63, 128.03, 68.16, 37.28, 33.39, 19.28, 15.45; MS(EI)
m/z 253 (M++H); HRMS calcd for C13H16O3S, 252.0813;
found, 252.0814; (Table 1, entry 10), oil turns solid on
keeping, mp 44–46 ꢁC; 1H NMR (300 MHz, CDCl3): d
0.87 (3H, t, J = 6.2 Hz, CH3CH2), 1.25–1.40 (18H, m,
9 · CH2), 1.54–1.67 (6H, m), 2.31 (3H, s, CH3S), 2.32–2.42
(6H, m, CH2CH2CO), 5.12 (2H, m, CH2S); 13C NMR
(75 MHz, CDCl3): 211.83, 173.53, 67.92, 42.84, 42.81,
34.35, 31.62, 29.69, 29.38, 29.25, 29.21, 29.05, 28.94, 24.86,
23.86, 22.50; IR (neat, cmÀ1) 2920, 2850, 1734, 1463, 1417;
HRMS calcd for C20H38O3S, 358.2507; found, 358.2508.
1
been fully characterised by H NMR, 13C NMR and
mass spectroscopy, and by mp and elemental analysis.
Acknowledgements
The authors would like to thank the analytical depart-
ment of Nicholas Piramal Research Centre for spectral
services and elemental analysis.
References and notes
1. (a) Kim, S.; Park, Y. H.; Kee, I. S. Tetrahedron Lett. 1991,
32, 3099–3100; (b) Ho, T.-L.; Wong, C. M. J. Chem. Soc.,
Chem. Commun. 1973, 224–225.
2. Dossena, A.; Palla, G.; Marchelli, R.; Lodi, T. Int. J. Pept.
Protein Res. 1984, 23, 198–202.
}
3. Griesbeck, A. G.; Oelgemoller, M.; Lex, J. J. Org. Chem.
2000, 65, 9028–9032.
4. Loftsson, T.; Kaminski, J. J.; Bodor, N. J. Pharm. Sci.
1981, 70, 743–749.
5. Vandenbosch, S.; Van’t Land, E.; Stoffelsma, J. Pat. Appl.
EP 7673, 1980; Chem. Abstr. 1980, 93, 113981 and U.S.
Patent 4,332,829, 1983; Chem. Abstr. 1984, 100, 84460.
6. Moir, M.; Gallacher, I. M.; Hobkirk, J.; Seaton, J. C.;
Suggett, A. Tetrahedron Lett. 1980, 21, 1085–1086.
7. Wade, L. G.; Gerdes, J. M.; Wirth, R. P. Tetrahedron Lett.
1978, 731–732.
8. Dossena, A.; Marchelli, R.; Casnati, G. J. Chem. Soc.,
Chem. Commun. 1979, 370–371.