J. Wuckelt, M. Döring, H. Görls, P. Langer
FULL PAPER
orange solid (41%). Ϫ IR (Nujol): ν˜ ϭ 1633 (s), 1610 (m), 1593 (s),
1577 (s), 1568 (s), 1515 cmϪ1. Ϫ C38H46Cl2N6Pd2 (870.6): calcd. C
52.43, H 5.33, N 9.65, Cl 8.14; found C 51.88, H 5.35, N 10.45,
Cl 8.12.
Acknowledgments
P. L. thanks Professor Dr. A. de Meijere for his support. Financial
support from the Fonds der Chemischen Industrie (Liebig scholar-
ship and funds for P. L.) and from the Deutsche Forschungs-
gemeinschaft is gratefully acknowledged.
Dichloro[1,2-bis(2,6-diisopropylphenylimino)-N,NЈ-bis(2-pyridyl-
methyl)ethane-1,2-diaminato]dipalladate(II) (11b): Yield: 0.50 g of
an orange solid (58%). Ϫ IR (Nujol): ν˜ ϭ 1610 (m), 1593 (s), 1577
(s), 1564 (s) cmϪ1. Ϫ C38H46Cl2N6Pd2 (870.6): calcd. C 52.43, H
5.33, N 9.65, Cl 8.14; found C 51.88, H 5.35, N 10.04, Cl 8.45.
[1] [1a]
[1b]
D. W. Stephan, Coord. Chem. Rev. 1989, 95, 41. Ϫ
W.
A. Herrmann, B. Cornils, Angew. Chem. 1997, 109, 1074; An-
gew. Chem. Int. Ed. Engl. 1997, 36, 1049.
[2]
A. Spannenberg, M. Oberthür, H. Noss, A. Tillack, P. Arndt,
R. Kempe, Angew. Chem. 1998, 110, 2190; Angew. Chem. Int.
Ed. 1998, 37, 2079.
Dichloro{N,NЈ-bis[(2-aminoethyl)-2-pyridyl]-1,2-bis(4-tolylimino)-
ethane-1,2-diaminato}dipalladate(II) (11c): Yield: 0.39 g of an or-
ange solid (52%). Ϫ 1H NMR (200 MHz, [D6]DMSO): δ ϭ 2.18
(s, 6 H, CH3), 2.97, 3.31 (2 ϫ br, 2 ϫ 4 H, CH2), 6.93 (m, 4 H,
Ar), 6.85 (t, J ϭ 7.6 Hz, 1 h, Pyr), 6.93 (d, J ϭ 6.9 Hz, 1 H, Pyr),
7.41 (t, J ϭ 8.4 Hz, 1 H, Pyr), 8.40 (d, J ϭ 5.4 Hz, 1 H, Pyr). Ϫ
IR (Nujol): ν˜ ϭ 1673 (s), 1605 (m), 1579 (s), 1504 (m) cmϪ1. Ϫ
C30H30N6Cl2Pd2 (758.4): calcd. C 47.51, H 3.99, N 11.08, Cl 9.35;
found C 47.39, H 4.38, N 11.53, Cl 9.51.
[3] [3a]
[3b]
F. T. Edelmann, Coord. Chem. Rev. 1994, 137, 403. Ϫ
[3c]
J. Barker, M. Kilner, Chem. Rev. 1994, 133, 219. Ϫ
Hagadorn, J. Arnold, Angew. Chem. 1998, 110, 1813; Angew.
J. R.
G. D. Whitener, J. R.
[3d]
Chem. Int. Ed. 1998, 37, 1729. Ϫ
Hagadorn, J. Arnold, J. Chem. Soc., Dalton Trans. 1999, 1249.
[4]
[4a]
For the coordination to boron, see:
Chem. Soc. 1969, 91, 2139. Ϫ For titanium, see:
quali, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Am. Chem.
S. Trofimenko, J. Am.
[4b]
M. Pas-
[4c]
Soc. 1979, 101, 4740. Ϫ
M. Döring, H. Görls, R. Beckert,
[4d]
Z. Anorg. Allg. Chem. 1994, 620, 551. Ϫ
P. Fehling, M.
Döring, F. Knoch, R. Beckert, H. Görls, Chem. Ber. 1995, 128,
405. Ϫ For the synthesis of oxalic acid-bis(imidoyl)chlorides,
Crystal Structure Determinations: The intensity data for the com-
pound were collected on a Nonius Kappa CCD diffractometer, us-
ing graphite-monochromated Mo-Kα radiation. Data were cor-
rected for Lorentz and polarization effects, but not for absorp-
tion.[15,16]
see: [4e] D.Lindauer, R. Beckert, T. Billert, M. Döring, H. Görls,
[4f]
J. Prakt. Chem. 1995, 337, 143. Ϫ
J. Brandenburg, R.
Beckert, P. Fehling, M. Döring, H. Görls, J. Prakt. Chem. 1996,
338, 430.
[5]
K. Kincaid, C. P. Gerlach, G. R. Giesbrecht, J. R. Hagadorn,
G. D. Whitener, A. Shafir, J. Arnold, Organometallics 1999,
18, 5360.
The structures were solved by direct methods (SHELXS [17]) and
refined by full-matrix least-squares techniques against F2o
(SHELXL-97[18]). The hydrogen atoms of the structures were in-
cluded at calculated positions with fixed thermal parameters. All
non-hydrogen atoms were refined anisotropically.[18] XP (SIE-
MENS Analytical X-ray Instruments, Inc.) was used for structure
representations.
[6] [6a]
L. M. Jackman, T. Jen, J. Am. Chem. Soc. 1975, 97, 2811.
[6b]
Ϫ
G. Scherer, H.-H. Limbach, J. Am. Chem. Soc. 1994,
116, 1230.
[7] [7a]
A. K. Aggarwal, D. W. Rodgers, M. Drottar, M. Ptashne,
[7b]
S. C. Harrison, Science 1988, 242, 899. Ϫ
M. Sundaral-
[7c]
ingham, Y. C. Sekharudu, Science 1989, 244, 1333. Ϫ
A.
Askew, P. Ballester, C. Buhr, K. S. Jeong, S. Jones, K. Parris,
K. Williams, J. Rebek, J. Am. Chem. Soc. 1989, 111, 1082. Ϫ
[7d]
M. M. Conn, J. Rebek, Chem. Rev. 1997, 97, 1647.
[8] [8a]
Crystal Data for 3a:[19] C32H36N6, Mr ϭ 504.67 g molϪ1, colourless
prism, size 0.40 ϫ 0.38 ϫ 0.32 mm3, monoclinic, space group P21/
H. C. M. Nelson, J. T. Finch, B. F. Luisi, A. Klug, Nature
1987, 330, 221. Ϫ [8b] V. Fritsch, E. Westhof, J. Am. Chem. Soc.
1991, 113, 8271.
˚
n, a ϭ 6.4164(5), b ϭ 21.157(2), c ϭ 10.3108(6) A, β ϭ 94.085(2)°,
[9] [9a]
H. J. Savage, C. J. Elliot, C. M. Freeman, J. L. Finney, J.
Chem. Soc., Faraday Trans. 1993, 89, 2609. Ϫ [9b] I. K. McDon-
ald, J. M. Thornton, J. Mol. Biol. 1994, 238, 777.
3
V ϭ 1396.2(2) A , T ϭ 183 K, Z ϭ 2, ρcalcd. ϭ 1.200 gcmϪ3, µ
˚
(Mo-Kα) ϭ 0.73 cmϪ1, F(000) ϭ 540, 3067 reflections, Θmax
ϭ
[10]
[11]
J. Yang, S. H. Gellman, J. Am. Chem. Soc. 1998, 120, 9090.
Diazadiene transition metal complexes represent efficient cata-
26.27°, 2815 independent reflections, 1724 reflections with Fo
Ͼ
4σ(Fo), 208 parameters, R ϭ 0.0568, Rw ϭ 0.1645, largest difference
lysts for olefin polymerization: [11a] L. K. Johnson, S. Mecking,
Ϫ3
˚
peak and hole: 0.369 e A
.
[11b]
M. Brookhart, J. Am. Chem. Soc. 1996, 118, 267. Ϫ
A. S.
Abu-Surrah, B. Rieger, Angew. Chem. 1996, 108, 2627; Angew.
[11c]
Crystal Data for 6:[19] C44H51MoN6NaO6, Mr ϭ 878.84 g molϪ1
,
Chem. Int. Ed. Engl. 1996, 35, 2475. Ϫ
C. M. Killian, L.
colourless prism, size 0.30 ϫ 0.25 ϫ 0.15 mm3, monoclinic, space
K. Johnson, M. Brookhart, Organometallics 1997, 16, 2005. Ϫ
[11d]
A. S. Abu-Surrah, B. Rieger, Angew. Chem. 1996, 108,
˚
group P21/n, a ϭ 12.3530(6), b ϭ 20.6111(5), c ϭ 17.2796(8) A,
2627; Angew. Chem. Int. Ed. Engl. 1996, 35, 2475. See also: Ϫ
3
˚
[11e]
β ϭ 94.755(1)°, V ϭ 4384.4(3) A , Tϭ Ϫ90 °C, Z ϭ 4, ρcalcd.
ϭ
G. van Koten, K. Vrieze, Adv. Organomet. Chem. 1982,
1.331 gcmϪ3, µ(Mo-Kα) ϭ 3.62 cmϪ1, F(000) ϭ 1832, 11681
reflections in h(Ϫ13/0), k(Ϫ22/21), l(Ϫ19/19), measured in the
range 3.95° Յ Θ Յ 23.31°, completeness Θmax ϭ 98.6%, 6126 inde-
pendent reflections, Rint ϭ 0.036, 5706 reflections with Fo Ͼ 4σ(Fo),
527 parameters, 0 restraints, R1obs ϭ 0.047, wR2obs ϭ 0.121, R1all ϭ
0.066, wR2all ϭ 1.134, GOOF ϭ 1.084, largest difference peak and
21, 151.
[12]
[13]
[14]
M. Döring, P. Fehling, H. Görls, W. Imhof, R. Beckert, D.
Lindauer, J. Prakt. Chem. 1999, 341, 748.
F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G.
Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2 1987, 1.
For molecular-based ferromagnetic interactions in heterodime-
tallic complexes, see: K. Nakatani, J. Y. Carriat, Y. Journaux,
Y., O. Kahn, F. Lloret, J. P. Renard, Y. Pei, J. Sletten, M. Verda-
guer, J. Am. Chem. Soc. 1989, 111, 5739.
COLLECT, Data Collection Software; Nonius B.V.,
Netherlands, 1998.
Z. Otwinowski, W. Minor, ‘‘Processing of X-ray Diffraction
Data Collected in Oscillation Mode‘‘, in Methods in Enzymo-
logy, Vol.- 276, Macromolecular Crystallography, Part A, ed-
ited by C.W. Carter, R.M. Sweet, pp. 307Ϫ326, Academic
Press 1997.
Ϫ3
˚
hole: 0.485/Ϫ0.555 e A
.
[15]
[16]
Crystal Data for 10a:[19] C36H44N6O6Cu2, Mr ϭ 783.85 g molϪ1
,
brown prism, size 0.40 ϫ 0.38 ϫ 0.36 mm3, orthorhombic, space
˚
group Pbca, a ϭ 9.173(1), b ϭ 14.853(1), c ϭ 26.275(1) A, α ϭ
3
˚
β ϭ γ ϭ 90°, V ϭ 3579.9(5) A , T ϭ 183 K, Z ϭ 4, ρcalcd. ϭ 1.454
gcmϪ3, µ(Mo-Kα) ϭ 0.73 cmϪ1, F(000) ϭ 1632, 3634 reflections,
Θmax ϭ 26.31°, 3634 independent reflections, 2228 reflections with
Fo Ͼ 4σ(Fo), 278 parameters, R ϭ 0.0431, Rw ϭ 0.0979, largest
[17]
[18]
G.M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
G.M. Sheldrick, SHELXL-97 (Release 97.2), University of
Göttingen, Germany, 1997.
Ϫ3
˚
difference peak and hole: 0.413 e A
.
810
Eur. J. Inorg. Chem. 2001, 805Ϫ811