8060 J. Phys. Chem. A, Vol. 112, No. 35, 2008
Hurley et al.
(5) Atkinson, R. J. Phys. Chem. Ref. Data 1989, Monograph 1.
(6) Wallington, T. J.; Andino, J. M.; Lorkovic, I. M.; Kaiser, E. W.;
Marston, G. J. Phys. Chem. 1990, 94, 3644.
(7) Ezell, M. J.; Wang, W.; Ezell, A. A.; Soskin, G.; Finlayson-Pitts,
B. J. Phys. Chem. Chem. Phys. 2002, 1, 5813.
(8) Garzo´n, A.; Cuevas, C. A.; Ceacero, A. A.; Notario, A.; Albaladejo,
J.; Ferna´ndez-Go´mez, M. J. Chem. Phys. 2006, 125, 104305.
(9) Ballesteros, B.; Garzo´n, A.; Jimenez, E.; Notario, A.; Albaladejo,
J. Phys. Chem. Chem. Phys. 2007, 9, 1210.
(10) Nelson, L.; Rattigan, O.; Neavyn, R.; Sidebottom, H.; Treacy, J.;
Nielsen, O. J. Int. J. Chem. Kinet. 1990, 22, 1111.
(11) Wu, H.; Mu, Y.; Zhang, X.; Jiang, G. Int. J. Chem. Kinet. 2003,
35, 81.
(12) Calvert, J. G.; Atkinson, R.; Kerr, J. A.; Madronich, S.; Moortgat,
G. K.; Wallington, T. J.; Yarwood, G., The Mechanisms of Atmospheric
Oxidation of the Alkenes; Oxford University Press: Oxford. U.K., 2000.
(13) Wallington, T. J.; Dagaut, P.; Liu, R.; Kurylo, M. J. Int. J. Chem.
Kinet. 1988, 20, 541.
(14) Cavalli, F.; Barnes, I.; Becker, K. H. EnViron. Sci. Technol. 2000,
34, 4111.
(15) Cavalli, F.; Geiger, H.; Barnes, I.; Becker, K. H. EnViron. Sci.
Technol. 2002, 36, 1263.
(16) Kwok, E. S. C.; Atkinson, R. Atmos. EnViron. 1995, 29, 1685.
(17) Bethel, H. L.; Atkinson, R.; Arey, J. Int. J. Chem. Kinet. 2001, 33,
310.
(18) Meagher, R. J.; McIntosh, M. E.; Hurley, M. D.; Wallington, T. J.
Int. J. Chem. Kinet. 1997, 29, 619.
(19) Wallington, T. J.; Hurley, M. D.; Schneider, W. F.; Sehested, J.;
Nielsen, O. J. Chem. Phys. Lett. 1994, 218, 34.
(20) Martin, P.; Tuazon, E. C.; Aschmann, S. M.; Arey, J.; Atkinson,
R. J. Phys. Chem. A 2002, 106, 11492.
(21) Holt, T.; Atkinson, R.; Arey, J. J. Photochem. Photobiol A: Chem.
2005, 176, 231.
initiated oxidation of 3-pentanol, which increases our knowledge
of the atmospheric chemistry of this compound. The atmospheric
oxidation of 3-pentanol will be initiated by reaction with OH
radicals, which occurs with a rate constant of k8 ) (1.32 (
0.15) × 10-11 cm3 molecule-1 s-1 in 700 Torr of air diluent at
296 K. Using an estimate for the 24 h average OH radical
concentration in the atmosphere of 106 molecules cm-3 2 gives
an estimate for the atmospheric lifetime of 3-pentanol of
approximately 1 day. The atmospheric oxidation of 3-pentanol
gives 3-pentanone as the major product in a yield of 58 ( 3%.
The reactivity of 3-pentanone toward OH radicals is ap-
proximately 6 times lower than that of 3-pentanol,28-30 and
hence 3-pentanone has an atmospheric lifetime of approximately
1 week. This lifetime is sufficiently long that most of the
3-pentanone will be transported out of urban areas and will not
contribute further to local air quality issues. CH3CHO and
C2H5CHO are formed in yields of 37 ( 2% and 28 ( 2%. With
respect to reaction with OH radicals, CH3CHO has ap-
proximately the same reactivity as 3-pentanol and C2H5CHO
is approximately 50% more reactive than 3-pentanol. A
substantial fraction of the CH3CHO and C2H5CHO products
will react in urban areas and contribute to local air quality issues.
The present study provides kinetic and mechanistic data that
can be used in future computer model studies of urban air
chemistry to assess the environmental impact of emissions of
3-pentanol. Such studies are beyond the scope of the present
work.
(22) Wallington, T. J.; Schneider, W. F.; Barnes, I.; Becker, K. H.;
Sehested, J.; Nielsen, O. J. Chem. Phys. Lett. 2000, 322, 97.
(23) Taatjes, C. A.; Christensen, L. K.; Hurley, M. D.; Wallington, T. J.
J. Phys. Chem. A 1999, 103, 9805.
(24) Yamanaka, T.; Kawasaki, M.; Hurley, M. D.; Wallington, T. J.;
Schneider, W. F. Phys. Chem. Chem. Phys. 2007, 9, 4211.
(25) Orlando, J. J.; Tyndall, G. S.; Wallington, T. J. Chem. ReV. 2003,
103, 4657.
Acknowledgment. O.J.N. thanks the Danish Natural Science
Research Council and the Villum Kann Rasmussen Foundation
for financial support.
(26) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson,
R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Atmos. Chem.
Phys. 2004, 4, 1461.
(27) Sakamaki, F.; Hatakeyama, S.; Akimoto, H. Int. J. Chem. Kinet
1983, 15, 1013.
(28) Atkinson, R.; Aschmann, S. M.; Carter, W. P. L.; Pitts, J. N., Jr.
Int. J. Chem. Kinet. 1982, 14, 839.
(29) Wallington, T. J.; Kurylo, M. J. J. Phys. Chem. 1987, 91, 5050.
(30) Atkinson, R.; Aschmann, S. M. J. Phys. Chem. 1988, 92, 4008.
References and Notes
(1) Mueller, S. A.; Anderson, J. E.; Wallington, T. J. J. Chem. Educ.,
in press, 2008.
(2) Finlayson-Pitts, B. J.; Pitts, J. N., Jr. Atmospheric Chemistry:
Fundamentals and Experimental Techniques; John Wiley and Sons: New
York, 1986.
(3) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson,
R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Atmos. Chem.
Phys. 2006, 6, 3625.
(4) Wallington, T. J.; Japar, S. M. J. Atmos. Chem. 1989, 9, 399.
JP803637C