ORGANIC
LETTERS
2001
Vol. 3, No. 8
1229-1232
A New Asymmetric Synthesis of
trans-Hydroisoquinolones
Asayuki Kamatani† and Larry E. Overman*
Department of Chemistry, 516 Rowland Hall, UniVersity of California,
IrVine, California 92697-2025
Received February 11, 2001
ABSTRACT
A convenient enantioselective synthesis of trans-hydroisoquinolones is described. This synthesis capitalizes on the ready availability of
enantioenriched 2-substituted cyclohexenols by exploiting the asymmetry of an allylic carbon−oxygen σ bond to control carbon−carbon bond
formation in pinacol-terminated cyclizations of N-acyliminium cations.
Decahydroisoquinoline rings are found in structurally diverse
isoquinoline alkaloids as well as several important clinical
agents.1,2 Morphine (1) and reserpine (2) are well-known
members of these groups. Because of the wide occurrence
and pharmacological importance of trans-hydroisoquinolines,
the development of new asymmetric routes to this ring
system remains an important objective in organic synthesis.
companying communication in this issue details reactions
wherein pinacol rearrangement of a ring carbon terminates
a cationic cyclization process.5 Much less developed are
cyclization-pinacol reactions concluded by hydride migra-
tion.6 A new sequence of this latter type, which we envisaged
(4) Recent illustrative examples include (a) MacMillan, D. W. C.;
Overman, L. E. J. Am. Chem. Soc. 1995, 117, 10391-10392. (b) Minor,
K. P.; Overman, L. E. Tetrahedron 1997, 53, 8927-8940. (c) Hanaki, N.;
Link, J. T.; MacMillan, D. W. C.; Overman, L. E.; Trankle, W. G.; Wurster,
J. A. Org. Lett. 2000, 2, 223-226. (d) Overman, L. E.; Pennington, L. D.
Org. Lett. 2000, 2, 2683-2686. (e) Molina-Ponce, A.; Overman, L. E. J.
Am. Chem. Soc. 2000, 122, 8672-8676.
(5) Cohen, F.; MacMillan, D. W. C.; Overman, L. E.; Romero, A. Org.
Lett. 2001, 3, 1225-1228; accompanying paper in this issue.
(6) For other Prins-pinacol reactions that involve hydride migrations,
see: (a) Cloninger, M. J.; Overman, L. E. J. Am. Chem. Soc. 1999, 121,
1092-1093. (b) Overman, L. E.; Pennington, L. D. Can. J. Chem. 2000,
78, 732-738.
In recent years, we have invented a suite of carbon-carbon
bond-forming ring constructions that couple pinacol rear-
rangements with cationic cyclization reactions.3,4 The ac-
(7) Several catalytic asymmetric reduction procedures would be possible;
at the time this work was initiated, oxazaborolidine-catalyzed borane
reduction was particularly attractive.8
(8) (a) Itsuno, S.; Ito, K.; Hirao, A.; Nakahama, S. J. Chem. Soc., Chem.
Commun. 1983, 469-470. (b) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. J.
Am. Chem. Soc. 1987, 109, 5551-5553. (c) For a review, see: Itsuno, S.
Org. React. 1998, 52, 395-576.
(9) Kamatani, A.; Overman, L. E. J. Org. Chem. 1999, 64, 8743-8744.
(10) For a review of the Suzuki reaction, see: Miyaura, N.; Suzuki, A.
Chem. ReV. 1995, 95, 2457-2483.
(11) For recent reviews of N-acyliminium ion chemistry, see: (a)
Hiemstra, H.; Speckamp, W. N. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, Chapter 4.5.
(b) de Koning, H.; Speckamp, W. N. In Methods of Organic Chemistry
(Houben-Weyl); Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann,
E., Eds.; Thieme: Stuttgart, 1995; Vol. E21b, Chapter D.1.4.5.
† Banyu Pharmaceutical Company, Process Research Division, 3-9-1
Kami-Mutsuna, Okazaki, Aichi 444-0858, Japan.
(1) Bentley, K. W. Nat. Prod. Rep. 1999, 16, 367-388 and references
therein.
(2) Lednicer, D.; Mitscher, L. A. The Organic Chemistry of Drug
Synthesis; Wiley: New York, 1997; Vol. 7 and earlier volumes in this series.
(3) For brief reviews, see: (a) Overman, L. E. Acc. Chem. Res. 1992,
25, 352-359. (b) Overman, L. E. Aldrichim. Acta 1995, 28, 107-120. (c)
Overman, L. E. In SelectiVities in Lewis Acid-Promoted Reactions; NATO
ASSI Series 289; Schinzer, D., Ed.; Kluwer Academic: Dordrecht, The
Netherlands, 1989; pp 1-20.
10.1021/ol015696v CCC: $20.00 © 2001 American Chemical Society
Published on Web 03/23/2001