Stereoselective Syntheses of Epothilones A and B
J . Org. Chem., Vol. 66, No. 19, 2001 6411
Ch a r t 2
necessary subunits, their convergent coupling, macro-
cyclization, and stereoselective epoxidation. The second
approach, pioneered by Danishefsky10,22 and continued
by White,23 Schinzer,24 Shibasaki,25 and Panek,26 recog-
nized a disconnection at or near the C12-C13 cis-olefin of
epothilones C and D to achieve a convergent coupling of
two stereochemically advanced fragments. The conver-
gent aldol approach, pioneered by Nicolaou27 and by
Mulzer,28,29 takes advantage of the full aldol retron at
C5-C7 of the epothilone backbone and joins the appropri-
ate fragments at their point of greatest functional and
stereochemical complexity. The various approaches un-
derscore the persistent limitations of modern asymmetric
synthesis that demand a balance between convergency
and efficient stereochemical control. A major current
objective in epothilone syntheses is the development of
a strategy to achieve a concise, convergent, and fully
stereocontrolled approach.
We now report a full account of our studies toward this
goal, culminating in the expedient and stereoselective
syntheses of epothilones A and B.30 Critical to the success
of this endeavor has been the development and applica-
tion of new methodologies and strategies suitable for the
construction of functionally and stereochemically complex
molecules. Our efforts have also focused on the explora-
tion and advancement of the use of nitrile oxides as
surrogates for aldol addition reactions.
spired to make the epothilones attractive targets for total
synthesis. Within six months of the first disclosure of the
relative stereochemistry of the epothilones the Danishef-
sky,10 Nicolaou,11 and Schinzer12 groups each indepen-
dently completed the total synthesis of epothilone A and,
shortly thereafter, epothilone B.13,14 The impressive ef-
forts toward their total synthesis, both by academic
research groups as well as by pharmaceutical compa-
nies,15,16,17 have resulted in a broader understanding of
the role of the functional and stereochemical features
leading to the physiological effects of the epothilones.
These studies, which include both analogue synthesis as
well as elegant degradation studies, have made the
epothilones the subject of intense synthetic scrutiny, and
several promising analogues have been prepared.15,18
The published synthetic routes to the epothilones have
been reviewed.1 In general, the published syntheses fall
into one of three approaches. The macrocyclic ring-closing
metathesis approach has been reported by Nicolaou,11
Schinzer,24a Danishefsky,19 Grieco,20 and Lerner.21 This
strategy takes advantage of the rapid assembly of the
Syn th etic P la n
Our initial synthetic planning of routes for the
epothilones benefited from early reports highlighting the
unique difficulties in controlling the stereochemistry of
the critical polypropionate region. Although we consid-
ered a convergent aldol coupling at C5-C7 to be an
attractive synthetic disconnection, the first generation
syntheses that had been reported documented the dif-
ficulties in stereoselectively accomplishing the necessary
anti-Felkin aldol addition.31 Likewise, although all of the
initial approaches had employed a stereoselective epoxi-
dation reaction as the final step, we believed that early
(19) Meng, D.; Su, D.-S.; Balog, A.; Bertinato, P.; Sorensen, E. J .;
Danishefsky, S. J .; Zheng, Y.-H.; Chou, T.-C.; He, L.; Horwitz, S. B. J .
Am. Chem. Soc. 1997, 119, 2733-2734.
(10) (a) Balog, A.; Meng, D.; Kamenecka, T.; Bertinato, P.; Su, D.-
S.; Sorensen, E. J .; Danishefsky, S. J . Angew. Chem., Int. Ed. Engl.
1996, 35, 2801-2803. (b) Meng, D.; Su, D.-S.; Balog, A.; Bertinato, P.;
Sorensen, E. J .; Danishefsky, S. J .; Zheng, Y. H.; Chou, T. C.; He, L.;
Horwitz, S. B. J . Am. Chem. Soc. 1997, 119, 2733.
(20) May, S. A.; Grieco, P. A. Chem. Commun. 1998, 1597.
(21) (a) Sinha, S. C.; Barbas, C. F., III; Lerner, R. A. Proc. Natl.
Acad. Sci. U.S.A. 1998, 95, 14603. (b) Sinha, S. C.; Sun, J .; Miller, G.
P.; Wartmann, M.; Lerner, R. A. Chem. Eur. J . 2001, 7, 1691-1702.
(22) (a) Balog, A.; Harris, C.; Savin, K.; Zhang, X. G.; Chou, T.-C.;
Danishefsky, S. J . Angew. Chem., Int. Ed. Engl. 1998, 2675, 5-2678.
(b) Harris, C. R.; Kuduk, S. D.; Balog, A.; Savin, K.; Glunz, P. W.;
Danishefsky, S. J . J . Am. Chem. Soc. 1999, 121, 7050-7062.
(23) (a) White, J . D.; Carter, R. G.; Sundermann, K. F. J . Org. Chem.
1999, 64, 684-685. (b) White, J . D.; Sundermann, K. F.; Carter, R. G.
Org. Lett. 1999, 1, 1431-1434.
(11) Yang, Z.; He. Y.; Vourloumis, D.; Vallberg, H.; Nicolaou, K. C.
Angew. Chem., Int. Ed. Engl. 1997, 36, 170-172.
(12) Schinzer, D.; Limberg, A.; Bauer, A.; Bo¨hm, O. M.; Cordes, M.
Angew. Chem., Int. Ed. Engl. 1997, 36, 543-544.
(13) Su, D.-S.; Balog, A.; Meng, D.; Bertinato, P.; Danishefsky, S.
J .; Zheng, Y.-H.; Chou, T.-C.; He, L.; Horwitz, S. B. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2093-2096.
(14) Nicolaou, K. C.; Pastor, J .; Wissinger, N.; He., Y.; Ninkovic, S.;
Sarabia., F.; Vouloumis, D.; Yang, Z.; Li, T.; Giannakakou, P.; Hamel,
E. Nature 1997, 36, 757-759.
(24) (a) Schinzer, D.; Bauer, A.; Bo¨hm, O. M.; Limberg, A.; Cordes,
M. Chem. Eur. J . 1999, 5, 2483-2491 (b) Schinzer, D.; Bauer, A.
Schieber, J . Chem. Eur. J . 1999, 5, 2492-2500.
(25) (a) Sawanda, D.; Shibasaki, M. Angew. Chem., Int. Ed. Engl.
2000, 39, 209-212. (b) Sawada, D.; Kanai, M.; Shibasaki, M. J . Am.
Chem. Soc. 2000, 122, 10521-10532.
(15) Bristol-Myers-Squibb: (a) J ohnson, J .; Kim, S. H.; Bifano, M.;
DiMarco, J .; Fairchild, C.; Gougoutas, J .; Lee, F. Long, B.; Tokarski,
J .; Vite, G. Org. Lett. 2000, 2, 1573. (b) Borzilleri, R. M.; Zheng, X.;
Schmidt, R. J .; J ohnson, J . A.; Kim, S. H.; DiMarco, J . D.; Fairchild,
C. R.; Gougoutas, J . Z.; Lee, F. Y. F.; Long, B. H.; Vite, G. D. J . Am.
Chem. Soc. 2000, 122, 8890-8897.
(26) Zhu, B.; Panek, J . Org. Lett. 2000, 2, 2575-2578.
(27) (a) Nicolaou, K. C.; He, Y.; Vourloumis, D.; Vallber, H.;
Roschangar, F.; Sarabia, F.; Ninkovic, S.; Yang, Z.; Trujillo, J . I. J .
Am. Chem. Soc. 1997, 119, 7960-7973. (b) Nicolaou, K. C.; Ninkovic,
S.; Sarabia, F.; Vourloumis, D.; He, Y.; Vallberg, H.; Finlay, M. R. V.;
Yang, Z. J . Am. Chem. Soc. 1997, 119, 7974-7991.
(16) Novartis: (a) ref 1c. (b) Altmann, K.-H.; Caravatti, G.; Floer-
sheimer, A.; Wartmann, M. Nicolaou, K. C.; Schinzer, D. Book of
Abstracts, 219th National Meeting of the American Chemical Society,
San Francisco, CA, March 26-30, 2000; American Chemical Soceity:
Washington, DC, 2000; Abstract 287.
(17) Schering AG: Klar, U.; Skuballa, W.; Schwede, W.; Buchmann,
B. Book of Abstracts, 219th National Meeting of the American Chemical
Society, San Francisco, CA, March 26-30, 2000; American Chemical
Soceity: Washington, DC, 2000; Abstract 286.
(28) (a) Mulzer, J . Mantoulidis, A.; O¨ hler, E. Tetrahedron Lett. 1998,
39, 8633. (b) Mulzer, J . Mantoulidis, A.; O¨ hler, E. J . Org. Chem. 2000,
65, 7456-7467.
(29) Martin, H. J .; Drescher, M.; Mulzer, J . Angew. Chem., Int. Ed.
2000, 39, 581-583.
(30) A preliminary report of this work has appeared: Bode, J . W.;
Carreira, E. M. J . Am. Chem. Soc. 2001, 124, 3611-3612.
(18) Harris, C. R.; Danishefsky, S. J . J . Org. Chem. 1999, 64, 8434.