Synthesis of Organocadmate Anions
Organometallics, Vol. 20, No. 8, 2001 1573
Et2Mg a n d Et2Cd (ben zen e-d 6). 1H NMR (0.6 M, 200
MHz): δ 0.17 (b, 2, CH2), 1.41 (b, 3, CH3), 3.30 (s, dioxane25).
Et2Mg, Et2Cd , a n d 14N4 (ben zen e-d 6); P r ep a r a tion of
EtMg(14N4)+Et3Cd -. 1H NMR (0.6 M, lower phase, 200
MHz): δ -0.95 (q, J ) 8.3 Hz, 2, CH2Mg), 0.51 (q, J ) 7.9 Hz,
6, CH2Cd), 1.19 (t, J ) 8.2 Hz, 3, CH3CMg), 1.83 (t, J ) 8.1
Hz, 9, CH3CCd), 0.90-2.10 (c, 16, most CH2’s of 14N4), 1.69
(s, 12, CH3N), 2.32 (bt, 4, CHHCH2CHH). 13C NMR (0.6 M,
lower phase, 50 MHz): δ 59.7 (NCCN), 56.1 (NCCCN), 43.3
(NCH3), 21.4 (NCCCN), 17.1 (CCCd), 14.9 (CCMg), 10.4 (CCd),
-0.7 (CMg); 113Cd NMR (0.6 M, lower phase, 67 MHz) δ 297.9.
Et2Mg, Et2Cd , a n d 14N4 (DME); P r ep a r a tion of EtMg-
produced a 0.3 M solution. Two liquid layers formed upon
gentle heating (70 °C). 1H NMR (upper layer, 300 MHz): δ
-1.61 (s, 3, CH3Mg), -0.26 (s, 9, CH3Cd, 0.90-3.00 (c, 20,
CH2’s of 14N4), 1.60 (s, 12, CH3N). Precipitation occurred
before NMR spectra could be taken of the small lower layer.
P h 2Mg, P h 2Cd , a n d 14N4 (ben zen e-d 6); P r ep a r a tion of
P h Mg(14N4)+P h 3Cd -. Besides amounts of the reagents that
would have produced a 0.2 M solution, 1 equiv of THF (to help
dissolve the Ph2Mg) also was weighed in before adding the
solvent. A large amount of precipitate was present. The 1H
NMR spectrum of the remaining solution showed it to contain
little solute. A homogeneous solution (ca. 0.05 M) resulted from
heating a portion of the precipitate in benzene to 70 °C; after
the solution was cooled to ambient temperature, it was possible
to take an NMR spectrum of the supersaturated solution before
crystals formed. 1H NMR (300 MHz): δ 0.82-1.80 (c, 16, most
CH2’s of 14N4+), 1.42 (s, 12, CH3N), 2.24 (c, 4, CHHCH2CHH),
7.26 (bs, 5, all H’s of PhMg), 7.33 (t, J ) 7.3 Hz, 3, p-H of
PhCd), 7.49 (t, J ) 7.6 Hz, 6, m-H of PhCd), 8.47 (d, J ) 7.5
Hz, 6, o-H of Ph3Cd).
1
(14N4)+Et3Cd -. H NMR (1.0 M, 200 MHz): δ -0.69 (q, J )
8.3 Hz, 2, CH2Mg), 0.10 (q, J ) 7.8 Hz, 6, CH2Cd), 1.27 (t, J )
8.1 Hz, 3, CH3CMg), 1.44 (t, J ) 8.3 Hz, 9, CH3CCd), 1.50-
2.80 (c, 16, most CH2’s of 14N4), 2.36 (s, 12, CH3N), 3.12 (bt,
4, CHHCH2CHH), 3.28 (s, CH3 of DME), 3.44 (s, CH2 of DME).
Et2Mg, Et2Cd , a n d 14N4 (THF ); P r ep a r a tion of EtMg-
1
(14N4)+Et3Cd -. H NMR (1.0 M, 200 MHz): δ -0.71 (q, J )
8.5 Hz, 2, CH2Mg), 0.16 (q, J ) 7.9 Hz, 6, CH2Cd), 1.20 (t, J )
7.8 Hz, 3, CH3CMg), 1.30 (t, J ) 8.1 Hz, 9, CH3CCd), 1.50-
2.80 (c, 16, most CH2’s of 14N4), 2.42 (s, 12, CH3N), 3.09 (bt,
4, CHHCH2CHH), 1.76 (m, CH2CO of THF), 3.62 (m, CH2O of
THF).
Et2Mg, Et2Cd , a n d 221C (ben zen e-d 6); P r ep a r a tion of
EtMg(221C)+Et3Cd -. Liquid phase separation took place
1
slowly. H NMR (0.5 M, lower phase, 200 MHz): δ -0.88 (q,
J ) 8.2 Hz, 2, CH2Mg), 0.44 (q, J ) 7.9 Hz, 6, CH2Cd), 1.18 (t,
J ) 8.4 Hz, 3, CH3CMg), 1.89 (t, J ) 7.9 Hz, 9, CH3CCd), 1.80-
3.50 (c, 32, all H’s of 221C).
E t2Mg, E t 2Cd , a n d 14N4 (d ioxa n e); P r ep a r a t ion of
EtMg(14N4)+Et3Cd -. 1H NMR (1.2 M, lower phase, 200
MHz): δ -0.78 (q, J ) 8.2 Hz, 2, CH2Mg), 0.50 (q, J ) 8.0 Hz,
6, CH2Cd), 1.17 (t, J ) 8.3 Hz, 3, CH3CMg), 1.27 (t, J ) 8.1
Hz, 9, CH3CCd), 1.40-2.72 (c, 32, most CH2’s of 14N4+), 2.38
(s, 12, CH3N), 2.97 (bt, 4, CHHCH2CHH), 3.57 (s, dioxane).
Et2Mg, Et2Cd , a n d 14N4 (Et2O); P r ep a r a tion of EtMg-
Np 2Mg, Np 2Cd , a n d 211C (ben zen e-d 6); P r ep a r a tion of
Np Mg(211C)+Np 3Cd -. Liquid phase separation was slow
(about 5 h to complete). 1H NMR (0.2 M, lower phase, 300
MHz): δ -0.63 (s, 2, CH2Mg), 0.76 (s, 6, CH2Cd), 1.20 (s, 9,
CH3CMg), 1.35 (s, 27, CH3Cd), 1.70-3.30 (c, 28, all H’s of
211C).
1
(14N4)+Et3Cd -. H NMR (1.0 M, lower phase, 200 MHz): δ
-0.40 (b, 2, CH2Mg), 0.38 (b, 6, CH2Cd), 0.82 (b, 3, CH3CMg),
1.21 (b, 9, CH3CCd), 1.40-2.70 (c, 32, most CH2’s of 14N4+),
2.40 (s, 12, CH3N), 2.90 (bt, 4, CHHCH2CHH), 1.08 (t, CH3 of
Et2O), 3.35 (q, CH2 of Et2O).
i-Bu 2Mg, i-Bu 2Cd , a n d 14N4 (ben zen e-d 6); P r ep a r a tion
of i-Bu Mg(14N4)+i-Bu 3Cd -. 1H NMR (0.4 M, lower phase,
200 MHz): δ -0.86 (d, J ) 6.7 Hz, 2, CH2Mg), 0.72 (d, J ) 5.7
Hz, 6, CH2Cd), 1.10 (d, J ) 6.0 Hz, 6, CH3CMg), 1.25 (d, J )
6.8 Hz, 18, CH3CCd), 2.60-2.80 (c, 4, CHMg and CHCd), 1.10-
2.70 (c, 16, most CH2’s of 14N4), 1.70 (s, 12, CH3N), 2.50 (bt,
4, CHHCH2CHH).
Colorless crystals of NpMg(211C)+Np3Cd- were obtained by
layering hexane (1 mL) over a solution prepared from Np2Mg
(42 mg, 0.25 mmol), Np2Cd (64 mg,0.25 mmol), and 211C (72
mg, 0.25 mmol) in benzene (0.8 mL). A homogeneous solution
resulted from dissolving the crystals (10 mg) in benzene-d6 (0.5
1
mL). H NMR (300 MHz): δ -0.63 (s, 2, CH2Mg), 0.80 (s, 6,
CH2Cd), 1.21 (s, 9, CH3CMg), 1.38 (s, 27, CH3CCd), 1.70-3.30
(c, 28, all H’s of 211C).
Np Mg(211C)+Np 3Cd - a n d TMEDA (ben zen e-d 6). Crys-
tals of NpMg(2,1,1-C)+Np3Cd- (10 mg, 0.014 mmol) were
dissolved in a benzene-d6 solution of TMEDA (0.5 mL, 0.008
Np 2Mg, Np 2Cd , a n d 14N4 (ben zen e-d 6); P r ep a r a tion of
Np Mg(14N4)+Np 3Cd -. Liquid phase separation was slow
(about 12 h to complete). 1H NMR (0.4 M, lower phase, 300
MHz): δ -0.64 (s, 2, CH2Mg), 0.71 (s, 6, CH2Cd), 1.04 (s, 9,
CH3CMg), 1.38 (s, 27, CH3CCd), 1.10-2.10 (c, 16, most CH2’s
of 14N4+), 1.78 (s, 12, CH3N), 2.30 (bt, 4, CHHCH2CHH).
Crystals of NpMg(14N4)+Np3Cd- were obtained by carefully
layering hexane (1 mL) over a solution prepared from Np2Mg
(80 mg, 0.48 mmol), Np2Cd (122 mg, 0.48 mmol), and 14N4
(123 mg, 0.48 mmol) in benzene (0.8 mL). A homogeneous
solution resulted from dissolving the crystals (10 mg) in
1
M, 0.004 mmol). H NMR (360 MHz): δ -0.62 (s, 2, CH2Mg),
0.80 (s, 6, CH2Cd), 1.19 (s, 9, CH3CMg), 1.38 (s, 27, CH3CCd),
1.60-3.20 (c, all H's of 211C), 1.48 (s, CH2 of TMEDA), 1.49
(s, CH3 of TMEDA).26
Np 2Mg, Np 2Cd , a n d 222C (ben zen e-d 6). 1H NMR (0.3 M,
360 MHz): δ 0.18 (s, 2, CH2Mg), 0.65 (s, 2, CH2Cd), 1.05 (s, 9,
CH3CCd), 1.51 (s, 9, CH3CMg), 2.38 (b, 12, CH2N), 3.37 (b, 12,
NCH2CH2O, 3.54 (b, 12, OCH2CH2O).
(Me3SiCH2)2Mg, (MeSiCH2)2Cd , a n d 221C (ben zen e-d 6);
P r ep a r a tion of Me3SiCH2Mg(221C)+(Me3SiCH2)3Cd -. Liq-
1
1
uid phase separation was slow. H NMR (0.3 M, lower phase,
benzene-d6 (0.5 mL). H NMR (300 MHz): δ -0.64 (s, 2, CH2-
200 MHz): δ -2.02 (s, 2, CH2Mg), -0.51 (s, 6, CH2Cd), -0.01
(s, 9, CH3SiCMg), 0.32 (s, 27, CH3SiCCd), 1.60-3.40 (c, all H’s
of 221C).
Mg), 0.85 (s, 6, CH2Cd), 1.11 (s, 9, CH3CMg), 1.61 (s, 27, CH3-
CCd), 1.15-2.10 (c, 16, most CH2's of 14N4+), 1.62 (s, 12,
CH3N), 2.70 (bt, 4, CHHCH2CHH).
Et2Zn a n d Et2Cd (ben zen e-d 6). 1H NMR (0.4 M, 200
MHz): δ 0.11 (q, J ) 8.0 Hz, 2, CH2Zn), 0.30* (q, J ) 8.0 Hz,
2, CH2Cd), 1.12 (t, J ) 8.1 Hz, 3, CH3CZn), 1.26* (t, J ) 7.9
Hz, 3, CH3CCd).
(Me3SiCH2)2Mg, (Me3SiCH2)2Cd , a n d 14N4 (b en zen e-
d 6); P r ep a r a tion of Me3SiCH2Mg(14N4)+(Me3SiCH2)3Cd -.
Liquid phase separation was slow (about 10 h to complete).
1H NMR (0.4 M, lower phase, 360 MHz): δ -2.20 (s, 2, CH2-
Mg), -0.50 (s, 6, CH2Cd), 0.15 (s, 9, CH3SiCMg), 0.34 (s, 27,
CH3SiCCd), 1.10-1.90 (c, 16, most CH2’s of 14N4+), 1.60 (s,
12, CH3N), 2.64 (bt, 4, CHHCH2CHH).
Me2Mg, Me2Cd , a n d 14N4 (ben zen e-d 6); P r ep a r a tion of
MeMg(14N4)+Me3Cd -. Immediate precipitation of white
crystals was observed from a preparation that would have
1
Et2Zn , Et2Cd , a n d 14N4 (ben zen e-d 6). H NMR (0.4 M,
200 MHz): δ 0.27 (b, 2, CH2Zn and CH2Cd), 1.41 (b, 3, CH3-
CZn and CH3CCd), 1.26 (bm, 1, CH2CH2CH2), 1.99 (s, 3, CH3N),
2.18 (s, 2, NCH2CH2N, 2.38 (bt, 2, CH2CH2CH2). 113Cd NMR
(0.4 M, 67 MHz): δ -0.08 (s).
(26) The absorptions of TMEDA alone in benzene-d6 are δ 2.20
(CH2) and 2.36 (CH3). The absorption positions observed here suggest
that TMEDA is coordinated to a metal.
(25) Small amounts of dioxane occasionally remained in the R2Mg
preparations.