Page 7 of 7
Journal of the American Chemical Society
Chem. Soc. 2009, 131, 10852−10853. (j) Masarwa, A.; Marek, I. Chem.
We are grateful for the financial support provided by the National
University of Singapore, the Ministry of Education (MOE) of
Singapore (R-143-000-613-112), A*STAR SERC (R-143-000-
648-305) and Chinese Fundamental Research Funds for the Central
Universities (XDJK2018C044).
Eur. J. 2010, 16, 9712−9721. (k) Kochi, T.; Hamasaki, T.; Aoyama, Y.;
Kawasaki, J.; Kakiuchi, F. J. Am. Chem. Soc. 2012, 134, 16544−16547. (l)
Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338,
1455−1458. (m) Mei, T.-S.; Werner, E. W.; Burckle, A. J.; Sigman, M. S.
J. Am. Chem. Soc. 2013, 135, 6830−6833. (n) Xu, L.; Hilton, M. J.; Zhang,
X.; Norrby, P.-O.; Wu, Y.-D.; Sigman, M. S.; Wiest, O. J. Am. Chem. Soc.
2014, 136, 1960−1967. (o) Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature
2014, 508, 340−344. (p) Masarwa, A.; Didier, D.; Zabrodski, T.; Schinkel,
M.; Ackermann, L.; Marek, I. Nature 2014, 505, 199−203. (q) Hamasaki,
T.; Aoyama, Y.; Kawasaki, J.; Kakiuchi, F.; Kochi, T. J. Am. Chem. Soc.
2015, 137, 16163−16171. (r) Vasseur, A.; Perrin, L.; Eisenstein, O.; Marek,
I. Chem. Sci. 2015, 6, 2770−2776. (s) Zhang, C.; Santiago, C. B.; Kou, L.;
Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 7290−7293. (t) Patel, H. H.;
Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 3462−3465. (u) Wang, Z.-X.;
Bai, X.-Y.; Yao, H.-C.; Li, B.-J. J. Am. Chem. Soc. 2016, 138, 14872-
14875. (v) He, Y.; Cai, Y.; Zhu, S. J. Am. Chem. Soc. 2017, 139, 1061-
1064. (w) Li, W.; Boon, J. K.; Zhao, Y. Chem. Sci. 2018, 9, 600-607.
(8) Grotjahn, D. B.; Larsen, C. R.; Gustafson, J. L.; Nair, R.; Sharma, A.
J. Am. Chem. Soc. 2007, 129, 9592−9593.
1
2
3
4
5
6
7
8
REFERENCES
(1) For selected reviews, see: (a) Trost, B. M. Science 1991, 254, 1471-
1477. (b) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259-281. (c)
Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res.
2008, 41, 40-49. (d) Wender, P. A.; Miller, B. L. Nature 2009, 460, 197-
201. (e) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int.
Ed. 2009, 48, 2854-2867. (f) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010,
39, 301-312.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) For selected reviews, see: (a) van der Drift, R. C.; Bouwman, E.;
Drent, E. J. Organomet. Chem. 2002, 650, 1-24. (b) Uma, R.; Crévisy, C.;
Grée, R. Chem. Rev. 2003, 103, 27-52. (c) Ahlsten, N.; Bartoszewicz, A.;
Martin-Matute, B. Dalton T. 2012, 41, 1660-1670. (d) Lorenzo-Luis, P.;
Romerosa, A.; Serrano-Ruiz, M. ACS Catal. 2012, 2, 1079-1086.
(3) For selected reviews, see: (a) Cadierno, V.; Crochet, P.; Gimeno, J.
Synlett 2008, 1105-1124. (b) Larionov, E.; Li, H.; Mazet, C. Chem.
Commun. 2014, 50, 9816−9826. (c) Li, H.; Mazet, C. Acc. Chem. Res. 2016,
49, 1232–1241. For selected examples, see: (d) Uma, R.; Davies,
Maxwell K.; Crévisy, C.; Grée, R. Eur. J. Org. Chem. 2001, 3141-3146. (e)
Branchadell, V.; Crévisy, C.; Grée, R. Chem. Eur. J. 2003, 9, 2062-2067.
(f) Ito, M.; Kitahara, S.; Ikariya, T. J. Am. Chem. Soc. 2005, 127, 6172-
6173. (g) Reetz, M. T.; Guo, H. Synlett 2006, 2127-2129. (h) Cadierno, V.;
García-Garrido, S. E.; Gimeno, J.; Varela-Álvarez, A.; Sordo, J. A. J. Am.
Chem. Soc. 2006, 128, 1360-1370. (i) Leung, D. H.; Bergman, R. G.;
Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 2746-2747. (j) Bartoszewicz,
A.; Livendahl, M.; Martín-Matute, B. Chem. Eur. J. 2008, 14, 10547-
10550. (k) Kim, J. W.; Koike, T.; Kotani, M.; Yamaguchi, K.; Mizuno, N.
Chem. Eur. J. 2008, 14, 4104-4109. (l) Bartoszewicz, A.; Martín-Matute,
B. Org. Lett. 2009, 11, 1749-1752. (m) Lastra-Barreira, B.; Diez, J.;
Crochet, P. Green Chem. 2009, 11, 1681-1686. (n) van Rijn, J. A.; Lutz,
M.; vonꢀChrzanowski, L. S.; Spek, A. L.; Bouwman, E.; Drent, E. Adv.
Synth. Catal. 2009, 351, 1637-1647. (o) Liu, P. N.; Ju, K. D.; Lau, C. P.
Adv. Synth. Catal. 2011, 353, 275-280. (p) Sabitha, G.; Nayak, S.;
Bhikshapathi, M.; Yadav, J. S. Org. Lett. 2011, 13, 382-385. (q) Díez, J.;
Gimeno, J.; Lledós, A.; Suárez, F. J.; Vicent, C. ACS Catal. 2012, 2, 2087-
2099. (r) Bellarosa, L.; Díez, J.; Gimeno, J.; Lledós, A.; Suárez, F. J.;
Ujaque, G.; Vicent, C. Chem. Eur. J. 2012, 18, 7749-7765. (s) Bizet, V.;
Pannecoucke, X.; Renaud, J.-L.; Cahard, D. Adv. Synth. Catal. 2013, 355,
1394-1402. (t) Manzini, S.; Poater, A.; Nelson, D. J.; Cavallo, L.; Nolan, S.
P. Chem. Sci. 2014, 5, 180-188. (u) Li, H.; Mazet, C. Org. Lett. 2013, 15,
6170-6173.
(9) (a) Larionov, E.; Lin, L.; Guénée, L.; Mazet, C. J. Am. Chem. Soc.
2014, 136, 16882-16894. (b) Lin, L.; Romano, C.; Mazet, C. J. Am. Chem.
Soc. 2016, 138, 10344-10350.
(10) For selected examples of enantiospecific isomerization of
enantiopure secondary allylic alcohols, see: (a) Bizet, V.; Pannecoucke, X.;
Renaud, J.-L.; Cahard, D. Angew. Chem. Int. Ed. 2012, 51, 6467-6470. (b)
Li, H.; Mazet, C. J. Am. Chem. Soc. 2015, 137, 10720−10727. (c) Martinez-
Erro, S.; Sanz-Marco, A.; Gómez, A. B.; Vázquez-Romero, A.; Ahlquist,
M. S. G.; Martín-Matute, B. J. Am. Chem. Soc. 2016, 138, 13408-13414.
(11) For selected examples on kinetic resolution of secondary allylic
alcohols, see: (a) Kitamura, M.; Manabe, K.; Noyori, R.; Takaya, H.
Tetrahedron Lett. 1987, 28, 4719-4720. (b) Hiroya, K.; Kurihara, Y.;
Ogasawara, K. Angew. Chem. Int. Ed. 1995, 34, 2287-2289. (c) Ren, K.;
Zhang, L.; Hu, B.; Zhao, M.; Tu, Y.; Xie, X.; Zhang, T. Y.; Zhang, Z.
ChemCatChem 2013, 5, 1317-1320. (d) Ren, K.; Zhao, M.; Hu, B.; Xie, X.;
Ratovelomanana-Vidal, V.; Zhang, Z. J. Org. Chem. 2015, 80, 12572-
12579.
(12) For our efforts on enantioselective amination of alcohols, see: (a)
Zhang, Y.; Lim, C.-S.; Sim, D. S. B.; Pan, H.-J.; Zhao, Y. Angew. Chem.,
Int. Ed. 2014, 53, 1399–1403. (b) Rong, Z.-Q.; Zhang, Y.; Chua, R. H. B.;
Pan, H.-J.; Zhao, Y. J. Am. Chem. Soc. 2015, 137, 4944–4947. (c) Yang,
L.-C.; Wang, Y.-N.; Zhang, Y.; Zhao, Y. ACS Catal. 2017, 7, 93-97. (d)
Lim, C. S.; Quach, T. T.; Zhao, Y. Angew. Chem. Int. Ed. 2017, 56, 7176-
7180.
(13) Liu, T.-L.; Ng, T. W.; Zhao, Y. J. Am. Chem. Soc. 2017, 139, 3643-
3646.
(14) For general reviews, see: (a) Miyaura, N. Synlett 2009, 2039-2050.
(b) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem.
Soc. Rev. 2009, 38, 1039-1075. (c) Edwards, H. J.; Hargrave, J. D.; Penrose,
S. D.; Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093-2105. (d) Tian, P.; Dong,
H.-Q.; Lin, G.-Q. ACS Catal. 2012, 2, 95-119. (e) Muller, D.; Alexakis, A.
Chem. Commun. 2012, 48, 12037-12049. For selected recent examples, see:
(f) Shintani, R.; Takeda, M.; Nishimura, T.; Hayashi, T. Angew. Chem., Int.
Ed. 2010, 49, 3969-3971. (g) Wu, C.; Yue, G.; Nielsen, C. D.-T.; Xu, K.;
Hirao, H.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 742-745.
(15) An alternative possibility of racemization of intermediate D by an
intramolecular transfer of Rh-H between the alkene and the carbonyl
moieties, followed by an alternative enantio-determining hydrometallation
(D to E) cannot be ruled out.
(16) For general reviews on alkene isomerization, see: (a) Biswas, S.
Comments Inorg. Chem. 2015, 35, 300-330. (b) Hassam, M.; Taher, A.;
Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Chem. Rev. 2015, 115,
5462-5569.
(17) For selected recent examples on alkene isomerization, see: (a)
Larsen, C. R.; Grotjahn, D. B. J. Am. Chem. Soc. 2012, 134, 10357−10360.
(b) Erdogan, G.; Grotjahn, D. B. Org. Lett. 2014, 16, 2818−2821. (c)
Crossley, S. W. M.; Barabe, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136,
16788. (d) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.;
Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945-955. (e) Liu, X.; Zhang,
W.; Wang, Y.; Zhang, Z.-X.; Jiao, L.; Liu, Q. J. Am. Chem. Soc. 2018, 140,
6873-6882.
(4) For selected reviews, see: (a) Mantilli, L.; Mazet, C. Chem. Lett.
2011, 40, 341-344. (b) Cahard, D.; Gaillard, S.; Renaud, J.-L. Tetrahedron
Lett. 2015, 56, 6159-6169.
(5) For selected examples, see: (a) Tanaka, K.; Qiao, S.; Tobisu, M.; Lo,
M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 9870-9871. (b) Tanaka,
K.; Fu, G. C. J. Org. Chem. 2001, 66, 8177-8186. (c) Mantilli, L.; Gérard,
D.; Torche, S.; Besnard, C.; Mazet, C. Angew. Chem. Int. Ed. 2009, 48,
5143-5147. (d) Mantilli, L.; Mazet, C. Chem. Commun. 2010, 46, 445-447.
(e) Quintard, A.; Alexakis, A.; Mazet, C. Angew. Chem., Int. Ed. 2011, 50,
2354−2358. (f) Li, J.-Q.; Peters, B.; Andersson, P. G. Chem. Eur. J. 2011,
17, 11143-11145. (g) Wu, R.; Beauchamps, M. G.; Laquidara, J. M.; Sowa,
J. R. Angew. Chem. Int. Ed. 2012, 51, 2106-2110. (h) Arai, N.; Sato, K.;
Azuma, K.; Ohkuma, T. Angew. Chem. Int. Ed. 2013, 52, 7500-7504.
(6) For relevant reviews, see: (a) Breslow, R. Chem. Soc. Rev. 1972, 1,
553−580. (b) Breslow, R. Acc. Chem. Res. 1980, 13, 170−177. (c) Schwarz,
H. Acc. Chem. Res. 1989, 22, 282−287. (d) Franzoni, I.; Mazet, C. Org.
Biomol. Chem. 2014, 12, 233−241. (e) Vasseur, A.; Bruffaerts, J.; Marek,
I. Nat. Chem. 2016, 8, 209−219.
(7) For selected examples, see: (a) Johnson, L. K.; Killian, C. M.;
Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414−6415. (b) Guan, Z.;
Cotts, P. M.; McCord, E. F.; McLain, S. J. Science 1999, 283, 2059−2062.
(c) Wakamatsu, H.; Nishida, M.; Adachi, N.; Mori, M. J. Org. Chem. 2000,
65, 3966−3970. (d) Chinkov, N.; Majumdar, S.; Marek, I. J. Am. Chem.
Soc. 2002, 124, 10282−10283. (e) Chinkov, N.; Majumdar, S.; Marek, I. J.
Am. Chem. Soc. 2003, 125, 13258−13264. (f) Berkefeld, A.; Mecking, S.
Angew. Chem., Int. Ed. 2006, 45, 6044−6046. (g) Chinkov, N.; Levin, A.;
Marek, I. Angew. Chem., Int. Ed. 2006, 45, 465−468. (h) Okada, T.; Park,
S.; Takeuchi, D.; Osakada, K. Angew. Chem., Int. Ed. 2007, 46, 6141−6143.
(i) Okada, T.; Takeuchi, D.; Shishido, A.; Ikeda, T.; Osakada, K. J. Am.
ACS Paragon Plus Environment