Macromolecules, Vol. 36, No. 12, 2003
Poly(p-oxybenzoyl-alt-p-mercaptobenzoyl) 4275
Refer en ces a n d Notes
Ta ble 5. Th er m a l P r op er ties of Cop olym er s
DSCb
(1) For example: Cassidy, P. E. Thermally Stable Polymers,
Syntheses and Properties. Marcel Dekker: New York, 1980;
Blumstain, A. Liquid Crystalline Order in Polymers. Aca-
demic Press: London, 1978.
(2) For example: Seymour, R. B.; Kirshenbaum, G. S. High
Performance Polymers; Their Origin and Development. Elsevi-
er: New York, 1986.
c
polymerization
methoda
polymer
code
Tt
∆H
Tn
monomer
(°C)
(J /g)
(°C)
ABA + AMBA
OS
SP
SP
MP
SP
d
377
418
369
408
POSLPF
PSOLPF
277.3
6.25
3.65
SO
281.6
(3) Yamashita, Y.; Kimura, K. Polymeric Materials Encyclopedia;
CRC Press: Boca Raton, FL, 1996; 8707.
a
SP: solution polymerization in LPF. MP: melt polymerization.
b
(4) Yamashita, Y.; Kato, Y.; Endo, S.; Kimura, K. Makromol.
Chem. Rapid Commun. 1988, 9 (9), 687.
(5) Kimura, K.; Endo, S.; Kato, Y.; Yamashita, Y. Polymer 1993,
35, 123.
(6) Kimura, K.; Yamashita, Y. Polymer 1994, 35, 3311.
(7) Kimura, K.; Endo, S.; Kato, Y.; Yamashita, Y. Polymer 1993,
34, 1054.
(8) Kimura, K.; Kato, Y.; Inaba, T.; Yamashita, Y. Macromol-
ecules 1995, 28, 255.
(9) Kricheldorf, H. R.; Schwarz, G.; Adebahr, T. Polym. Prepr.
(Am. Chem. Soc., Div. Polym. Chem.) 1993, 34 (1), 768.
(10) Schwarz, G.; Kricheldorf, H. R. Macromolecules 1991, 24,
2829.
(11) Schwarz, G.; Kricheldorf, H. R. Macromolecules 1995, 28,
3911.
(12) Kricheldorf, H. R.; Schwarz, G.; Adebahr, T.; Wilson, D. J .
Macromolecules 1993, 26, 6622.
(13) Kimura, K.; Zhuang, J .; Kida, M.; Yamashita, Y.; Sakaguchi,
Y. In preparation for publication.
(14) Kimura, K.; Nakajima, D.; Kobashi, K.; Uchida, T.; Ya-
mashita, Y.; Sakaguchi, Y. Polym. Adv. Technol. 2000, 11,
747.
(15) Kricheldorf, H. R.; Conradi, A. Macromolecules 1989, 22, 14.
(16) Allen, C. F.; Mckay, D. D. Org. Synth. 1932, 12, 76.
(17) Compaigne, E.; Meyer, W. W. J . Org. Chem. 1962, 27, 2835.
(18) Bordwell, F. G.; Bontan, P. J . J . Org. Chem. Soc. 1956, 78,
854.
(19) Shimamura, K.; Minter, J .; Thomas, E. L. J . Mater. Sci. Lett.
1983, 2, 54.
(20) Burton, W. K.; Cabrera, N.; Frank, F. C. Philos. Trans. R.
Soc. 1950, A 243, 299,.
Solid-solid transition temperature (Tt) was measured on DSC
with
a
heating rate of 10 °C/min in nitrogen. c Tn: Nematic
transition temperature was measured on an optical microscope
with heating stage under crossed polarization. Transition was
not detected.
d
show higher Tt and larger ∆H.7,40 Concerning random
copolymer, the transition was not detected. POSLPF and
PSOLPF show similar transitions at around 280 °C. This
indicates that the regular sequences enhance the crys-
tallinity and the closer chain packing.
All these polymers exhibit liquid crystal transition
from crystalline to nematic phase. Transition temper-
ature (Tn) of POSLPF and PSOLPF are 417 and 408 °C,
respectively, which are 30-40 °C higher than that of
the random copolymers of 377 °C. It has been reported
that Tn of copolymers depends on the sequence regular-
ity and the regular sequence increases Tn due to
stronger interaction.41 The polymer prepared by the
melt polymerization of OS shows Tn of 369 °C which
comes close to Tn of the random copolymer. The polymer
prepared by the melt polymerization of OS does not
maintain the alternating sequence, and the randomiza-
tion of sequence occurs by the transesterification reac-
tion in the melt polymerization process.
(21) Frank, F. C. Adv. Phys. 1952, 1, 91,.
(22) Dean, B. D.; Matner, M.; Tibbitt, J . M. Comput. Polym. Sci,
1988, 5, 317.
Con clu sion s
(23) Temin, S. C. J . Org. Chem. 1961, 26, 2518.
(24) Loncrini, D. F. J . Polym. Sci., Part A-1, 1966, 4, 1531.
(25) Riecke, E. E.; Hamb, F. L. J . Polym. Sci., Polym. Chem. Ed.
1977, 15, 593.
(26) Huang, J .; Lebianc, J . P.; Hall, H. K., J r. J . Polym. Sci.,
Polym. Part A: Polym. Chem. 1992, 30, 345.
(27) Mathew, J .; Ghagage, R. S.; Ponratham, S.; Prasad, S. D.
Macromolecules 1994, 27, 4021.
(28) Vulic, I.; Schulpen, T. J . Polym. Sci., Part A: Polym. Chem.
1992, 30, 2725.
(29) Mathew, J .; Bahulekar,; Ghagage, R. S.; Ponratham, S.;
Prasad, S. D. Macromolecules 1992, 25, 7338.
(30) Wiilliams, P. W.; Han, X.; Padias, A. B.; Hall, H. K. J r.
Macromolecules 1996, 29, 1874.
(31) Kenwright, A. M.; Peace, S. K.; Richards, R. W.; Bunn, A.;
MacDonald, W. A. Polymer 1999, 40, 5851.
(32) Stewart, M. E.; Cox, A. J .; Naylor, D. M. Polymer 1993, 34,
4060.
(33) Montaudo, M. S.; Montaudo, G. Macromolecules 1992, 25,
520.
(34) Li, M. H.; Brulet, A.; Keller, P.; Strazielle, C.; Cotton, J . P.
Macromolecules 1993, 26, 119.
(35) Economy, J .; Storm, R. S.; Matkovich, V. I.; Cittis, S. G.;
Nowak, B. E. J . Polym. Sci., Chem. Ed. 1976, 14, 2207.
(36) Volksen, W.; Geiss, R.; Economy, J . J . Polym. Sci., Part B:
Polym. Phys. 1986, 24, 2117.
The whiskers of POB-alt-PMB are successfully pre-
pared by the polymerization of OS and SO. They possess
extremely high crystallinity. They consist of the alter-
nating polymer chains and the polymer chains aligned
along the long axis of the whisker. The chemical
structure of the monomer and the miscibility between
the oligomer and the solvent are very important pa-
rameters used to control the length and the regular
sequence. Concerning the chemical structure of the
monomer, SO gives an advantage in making the longer
whiskers rather than OS due to the higher miscibility,
which brings about the formation of a smaller number
of nuclei. However, OS gives an advantage in maintain-
ing the alternating sequence because the difference in
the rate constant between the oligomer formation and
the transesterification reaction is much larger than that
of SO. Concerning the solvent, aromatic solvents yield
the longer whiskers than LPF, but they give a disad-
vantage in maintaining the alternating sequence due
to the higher miscibility. The formation mechanism of
the whiskers can be proposed as follows; When the
molecular weight of the oligomers exceeds the critical
value, they are precipitated prior to the randomization
by transesterification reaction and form the needlelike
crystals. Further polymerization occurs in the crystals
and the whiskers of POB-alt-PMB are finally completed.
These whiskers exhibit better thermal properties com-
pared with the random copolymers.
(37) Kricheldorf, H. R.; Schwarz, G. Polymer 1984, 25, 520.
(38) Kricheldorf, H. R.; Schwarz, G. Makromol. Chem. 1983, 184,
475.
(39) Lieser, G. J . Polym. Sci., Polym. Phys. Ed. 1983, 21, 1611.
(40) Kato, Y.; Endo, S.; Kimura, K.; Yamashita, Y.; Tsugita, H.;
Monobe, K. Koubunshi Ronbunshu 1987, 44 (1), 35.
(41) Ober, C.; Lenz, R. W.; Galli, G.; Chiellini, E. Macromolecules
1983, 16, 1034.
MA030046N