T. Nakamura, M. Shiozaki / Tetrahedron Letters 42 (2001) 2701–2704
SEMO SEMO
2703
H
H
O
O
a, b
c
O
O
d, e
C6H13
I
( )5
16
O
O
69%
81%
63%
NHBz
NHBz
BzO
BzO
19
OTBDPS
OTBDPS
17
HO
H
O
f
O
C6H13
sphingofungin E (1)
( )5
88%
NHBz
OH
O
BzO
20
Scheme 2. Reagents and conditions: (a) Dess–Martin periodinate, CH2Cl2, rt, 1.5 h; (b) CHI3, CrCl2, THF, rt, 2 h; (c)
organoborane 18, PdCl2(dppf), Ph3As, Cs2CO3, THF–DMF, rt, 2 h; (d) 5% aq. H2SO4, acetone, rt, 5 h; (e) HF–Py complex, THF,
rt, 5.5 h; (f) NaOH, H2O, dioxane, 70°C, 7.5 h, then neutralized with Amberlite IR-120.
Based on the preliminary experiment, difficulties were
expected in the deprotection of the C3 O-benzyl group
in the final stage. Therefore, we removed the benzyl
group at this stage. However, applying hydrogenolytic
conditions using Pd/C as a catalyst or other methods10
to cleave the benzyl group proved fruitless. Finally,
treatment of 13 with NaBrO3 and NaHSO3 gave 14 in
61% yield.11 After the reduction of the azide group of
14 under hydrogen using Pd on carbon as a catalyst in
ethyl acetate, the following treatment with 3 equivalents
of benzoyl chloride and excess triethylamine afforded
the O-benzoylated benzoylamide 15 in 80% yield. Selec-
tive cleavage of the C6 O-TBS group of 15 by treat-
ment with 5% aqueous H2SO4 in acetone was
accomplished to give alcohol 16 in 87% yield without
cleavage of both the TBDPS and SEM groups.
References
1. Isolation of sphingofungins A–D: (a) VanMiddlesworth,
F.; Giacobbe, R. A.; Lopez, M.; Garrity, G.; Bland, J.
A.; Bartizal, K.; Fromtling, R. A.; Polishook, J.;
Zweerink, M.; Edison, A. M.; Rozdilsky, W.; Wilson, K.
E.; Monaghan, R. A. J. Antibiot. 1992, 45, 861–867.
Structure elucidation: (b) VanMiddlesworth, F.;
Dufresne, C.; Wincott, F. E.; Mosley, R. T.; Wilson, K.
E. Tetrahedron Lett. 1992, 33, 297–300. Isolation of
sphingofungins E–F: (c) Horn, W. S.; Smith, T. L.; Bills,
G. F.; Raghoobar, S. L.; Helms, G. L.; Kurts, M. B.;
Marrinan, J. A.; Frommer, B. R.; Thornton, R. A.;
Mandara, S. M. J. Antibiot. 1992, 45, 1692–1696.
2. For total synthesis of the sphingofungins. Sphingofungin
D, see: (a) Chida, N.; Ikemoto, H.; Noguchi, A.; Amano,
S.; Ogawa, S. Nat. Prod. Lett. 1995, 6, 295. (b) Mori, K.;
Otaka, K. Tetrahedron Lett. 1994, 35, 9207.; Otaka, K.;
Mori, K. Eur. J. Org. Chem. 1999, 1795–1802. Sphingo-
fungins B and F, see: (c) Kobayashi, S.; Matsumura, M.;
Furuta, T.; Hayashi, T.; Iwamoto, S. Synlett 1997, 301.;
Kobayashi, S.; Furuta, T.; Hayashi, T.; Nishijima, M.;
Hanada, K. J. Am. Chem. Soc. 1998, 120, 908–919 and
4256; Kobayashi, S.; Furuta, T. Tetrahedron 1998, 54,
10275–10294. Sphingofungin F, see: (d) Trost, B. M.;
Lee, C. B. J. Am. Chem. Soc. 1998, 120, 6818–6819.
3. (a) Fujita, T.; Inoue, K.; Yamamoto, S.; Ikumoto, T.;
Sasaki, S.; Toyama, R.; Yoneta, M.; Hoshino, Y.; Oku-
moto, T. J. Antibiot. 1994, 47, 208; (b) Miyake, Y.;
Kozutsumi, Y.; Nakamura, S.; Fujita, T.; Kawasaki, T.
Biochem. Biophys. Res. Commun. 1995, 211, 396.
4. For total syntheses of myriocin, see: (a) Banfi, L.; Bretta,
M. G.; Colombo, L.; Gennari, C.; Scolastico, C. J. Chem.
Soc., Chem. Commun. 1982, 488.; Banfi, L.; Bretta, M.
G.; Colombo, L.; Gennari, C.; Scolastico, C. J. Chem.
Soc., Perkin Trans. 1 1983, 1613. (b) Yoshikawa, M.;
Yokokawa, Y.; Okuno, Y.; Murakami, N. Chem. Pharm.
Bull. 1994, 42, 994. Yoshikawa, M.; Yokokawa, Y.;
Okuno, Y.; Murakami, N. Tetrahedron 1995, 51, 6209.
(c) Sano, S.; Kobayashi, Y.; Kondo, T.; Takebayashi,
M.; Maruyama, S.; Fujita, T.; Nagano, Y. Tetrahedron
Lett. 1995, 36, 2097. (d) Hatakeyama, S.; Yoshida, M.;
Esumi, T.; Iwabuchi, Y.; Irie, H.; Kawamoto, T.;
Yamada, H.; Nishizawa, M. Tetrahedron Lett. 1997, 45,
7887.
The following steps to introduce the lipophilic side
chain with an E-geometrical alkene part to compound
16 were achieved by applying the reported method2d,5
(Scheme 2).
Thus, Dess–Martin periodinate oxidation of the C6
hydroxyl group of 16 to an aldehyde, followed by iodo
olefination of the resulting aldehyde, exclusively
afforded (E)-iodoolefin 17 in 69% yield without any
detection of the (Z)-isomer. Suzuki coupling12 of vinyl
iodide 17 and organoborane 18 using PdCl2(dppf),
Ph3As and Cs2CO3 in THF–DMF provided the desired
(E)-alkene 19 in 81% yield. The deprotection reactions
to convert 19 to 1 were carried out as follows. The C14
ethylene acetal of 19 was removed by hydrolysis with
5% aqueous H2SO4 in acetone. Treatment of the
obtained ketone with a HF–pyridine complex in THF
cleaved both TBDPS and SEM ethers to give keto diol
20 in 63% yield. Finally, the lactone ring, benzamide
and benzoyl ester groups of 20 were saponified in the
presence of NaOH in dioxane–H2O, and neutralization
with Amberlite IR-120 ion-exchange resin afforded sph-
ingofungin E (1)13 in 88% yield.
Thus, we were able to accomplish the synthesis of
sphingofungin E from the already-identified
D-glucose
derivative 2 in a stereocontrolled manner in 29 steps in
1.1% overall yield.