N. Reenabthue et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6465–6469
6469
DNA (Fig. 3b). The better discrimination should be attributed to the
Supplementary data
more effective quenching of the pyrenebutyryl label in the single
stranded PNA8 than the pyrenecarbonyl label in PNA7 as shown
by the smaller fluorescence of PNA8 compared to PNA7. After
hybridization with the complementary DNA, both pyrene-labeled
PNAs yielded similar fluorescence signals. Quenching of pyrene
by nucleobases is known to occur via electron transfer from G, to
T or to C.28,29 The more effective quenching of the pyrenebutyryl
label than the pyrenecarbonyl label can be attributed to at least
two factors. First, the pyrenebutyryl group has a flexible linker,
allowing more effective contact with neighboring nucleobases in
the single stranded PNA. Second, the pyrenebutyryl label has an al-
kyl group, while the pyrenecarbonyl label has a carbonyl group, di-
Supplementary data associated with this article can be found, in
References and notes
1. Nielsen, P. E. Acc. Chem. Res. 1999, 32, 624.
2. Uhlmann, E.; Peyman, A.; Breipohl, G.; Will, D. W. Angew. Chem., Int. Ed. 1998,
37, 2796.
3. Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D.
A.; Berg, R. H.; Kim, S. K.; Nordén, B.; Nielsen, P. E. Nature 1993, 365, 566.
4. Demidov, V. V.; Potaman, V. N.; Frank-Kamenetskii, M. D.; Egholm, M.;
Buchardt, O.; Sönnichsen, S. H.; Nielsen, P. E. Biochem. Pharmacol. 1994, 48,
1310.
5. Kuhn, H.; Demidov, V. V.; Coull, J. M.; Fiandaca, M. J.; Gildea, B. D.; Frank-
Kamenetskii, M. D. J. Am. Chem. Soc. 2002, 124, 1097.
6. Gasser, G.; Hüsken, N.; Köster, S. D.; Metzler-Nolte, N. Chem. Commun. 2008,
3675.
rectly connect to the p-system of the pyrene. The redox properties
of the pyrene chromophores in both labels are therefore different,
resulting in different quenching behaviors.23
7. Sosniak, A. M.; Gasser, G.; Metzler-Nolte, N. Org. Biomol. Chem. 2009, 7, 4992.
8. de la Torre, B. G.; Eritja, R. Bioorg. Med. Chem. Lett. 2003, 16, 391.
9. Kersebohm, T.; Kirin, S. I.; Metzler-Nolte, N. Bioorg. Med. Chem. Lett. 2006, 16,
2964.
10. Englund, E. A.; Appella, D. H. Org. Lett. 2005, 7, 3465.
11. Appella, D. H.; Englund, E. A. Angew. Chem., Int. Ed. 2007, 46, 1414.
12. Lu, X.-W.; Zeng, Y.; Liu, C. F. Org. Lett. 2009, 11, 2329.
13. Suparpprom, C.; Srisuwannaket, C.; Sangvanich, P.; Vilaivan, T. Tetrahedron Lett.
2005, 46, 2833.
14. Vilaivan, T.; Srisuwannaket, C. Org. Lett. 2006, 8, 1897.
15. Vilaivan, C.; Srisuwannaket, C.; Ananthanawat, C.; Suparpprom, C.; Kawakami,
J.; Yamaguchi, Y.; Tanaka, Y.; Vilaivan, T. Artificial DNA: PNA & XNA 2011, 2, 50.
16. Ananthanawat, C.; Vilaivan, T.; Hoven, V. P.; Su, X. D. Biosens. Bioelectron. 2010,
25, 1064.
17. Korkaew, P.; Vilaivan, T. Nucleic Acids Symp. Ser. 2008, 52, 251.
18. Wang, X.; Espinosa, J. F.; Gellman, S. H. J. Am. Chem. Soc. 2000, 122, 4821.
19. Lee, H. S.; LePlae, P. R.; Porter, E. A.; Gellman, S. H. J. Org. Chem. 2001, 66, 3597.
20. Blake, J.; Willson, C. D.; Rapoport, H. J. Am. Chem. Soc. 1964, 86, 5293.
21. Vilaivan, T.; Lowe, G. J. Am. Chem. Soc. 2002, 124, 9326.
22. This is the calculated pKa figure of the pyrrolidine nitrogen atom of N-Boc-
(3S,4R)-3-aminopyrrolidine-4-carboxylic acid ethyl ester [955138-41-7] as
provided by SciFinder database, accessed 07 April 2011.
23. Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541.
24. Nazarenko, I.; Piers, R.; Lowe, B.; Obaidy, M.; Rashtchian, A. Nucleic Acids Res.
2002, 30, 2089.
25. French, D. J.; Archard, C. L.; Brown, T.; McDowell, D. G. Mol. Cell. Probes 2001,
15, 363.
26. Saito, Y.; Motegi, K.; Bag, S. S.; Saito, I. Bioorg. Med. Chem. Lett. 2008, 16, 107.
27. Okamoto, A.; Kanatani, K.; Saito, I. J. Am. Chem. Soc. 2004, 126, 4820.
28. Manoharan, M.; Tivel, K. L.; Zhao, M.; Nafisi, K.; Netzel, T. L. J. Phys. Chem. 1995,
99, 17461.
29. Wilson, J. N.; Cho, Y.; Tan, S.; Cuppoletti, A.; Kool, E. T. Chem. Biochem. 2008, 9,
279.
30. Nakamura, M.; Fukunaga, Y.; Sasa, K.; Ohtoshi, Y.; Kanaori, K.; Hayashi, H.;
Nakano, H.; Yamana, K. Nucleic Acids Res. 2005, 33, 5887.
31. Mayer, E.; Valis, L.; Wagner, C.; Rist, M.; Amann, N.; Wagenknecht, H.-A. Chem.
Biochem. 2004, 5, 865.
The generation of a positive (turn-on) fluorescence signal in this
particular system is an advantage over many other related pyrene-
labeled DNA probes whereby the fluorescence is often quenched
upon hybridization with DNA as a result of intercalation of the pyr-
ene chromophore between the base stack in the DNA duplex.30
Only when the pyrene was linked to the nucleobase via relatively
rigid linkers that a fluorescence enhancement was observed since
no intercalation was possible without disrupting the Waston-Crick
base pairing.27,31,32 The fluorescence enhancement observed, to-
gether with the absence of duplex stabilization of the pyrene-la-
beled acpc/apcPNA relative to the unlabeled acpc/apcPNA,
suggested the absence of intercalation of the pyrene labels be-
tween the base stack in acpc/apcPNAÁDNA hybrids.33 In effect,
the pyrenecarbonyl- or pyrenebutyryl-labeled acpc/apcPNAs be-
have as quencher-free PNA beacons.34 These singly-labeled probes
are more easily synthesized than the corresponding dual-labeled
PNA probes and should be less likely to have problems of aqueous
solubility.5,35 Although the fluorescence enhancement of these pro-
totypic systems is relatively modest because of the high back-
ground fluorescence of the pyrene chromophores in the single
stranded PNA, the excellent specificity warrants potential use of
the system. As the extent of the quenching of pyrene by nucleo-
bases is likely to be sequence-dependent,23,24 work is now in pro-
gress to optimize the positions and structures of the label that will
allow maximum fluorescence change to improve the efficiency of
the DNA sequence determination.
Acknowledgments
32. Hwang, G. T.; Seo, Y. J.; Kim, S. J.; Kim, B. H. Tetrahedron Lett. 2004, 45, 3543.
33. Telser, J.; Cruickshank, K. A.; Morrison, L. E.; Netzel, T. L. J. Am. Chem. Soc. 1989,
111, 6966.
34. For a review on quencher-free DNA beacons see: Venkatesan, N.; Seo, Y. J.; Kim,
B. H. Chem. Soc. Rev. 2008, 37, 648.
We acknowledge the Thailand Research Fund (TRF) and Com-
mission on Higher Education (MRG5180025 to C.S. and
RTA5280002 to T.V.) and the Center of Excellence for Innovation
in Chemistry (PERCH-CIC), Commission on Higher Education, Min-
istry of Education (to N.R.) for financial support.
35. Seitz, O. Angew. Chem., Int. Ed. 2000, 39, 3249.