Communication
RSC Advances
´
Chem. Rev., 2011, 111, 2626; (i) M. Yus, J. C. Gonzalez-
´
Gomez and F. Foubelo, Chem. Rev., 2011, 111, 7774.
4 For leading reviews on biocatalytic transamination, see: (a)
¨
M. Hohne and U. T. Bornscheuer, ChemCatChem, 2009, 1,
42; (b) D. Zhu and L. Hua, Biotechnol. J., 2009, 4, 1420; (c)
D. Koszelewski, K. Tauber, K. Faber and W. Kroutil, Trends
Biotechnol., 2010, 28, 324; (d) J. Ward and R. Wohlgemuth,
Curr. Org. Chem., 2010, 14, 1914; (e) A. Rajagopalan and
W. Kroutil, Mater. Today, 2011, 14, 144; (f) M. S. Malik,
E.-S. Park and J.-S. Shin, Appl. Microbiol. Biotechnol., 2012,
94, 1163; (g) S. Mathew and H. Yun, ACS Catal., 2012, 2, 993.
5 For a leading reference on chiral guanidine-catalyzed
Scheme 4
asymmetric
synthesis
of
a-amino
acids,
see:
A. Hjelmencrantz and U. Berg, J. Org. Chem., 2002, 67, 3585.
6 For leading references on chiral Lewis acid-catalyzed
asymmetric synthesis of a-amino acids, see: (a)
K. R. Knudsen, S. Bachmann and K. A. Jørgensen, Chem.
Commun., 2003, 2602; (b) S. Bachmann, K. R. Knudsen and
K. A. Jørgensen, Org. Biomol. Chem., 2004, 2, 2044.
7 For leading references on transamination of a-keto acids
with metal complexes, see: (a) K. Bernauer, R. Deschenaux
and T. Taura, Helv. Chim. Acta, 1983, 66, 2049; (b)
R. Deschenaux and K. Bernauer, Helv. Chim. Acta, 1984, 67,
373.
In summary, we have shown that a-keto acetals can be effi-
ciently transaminated to a-amino acetals in 50–85% yield and
82–86% ee with o-HOPhCH2NH2 as nitrogen donor and hydro-
quinine derivative C5 as catalyst. Optically active a-amino
acetals are synthetically useful compounds. The current studies
extend the biomimetic transamination to another class of
carbonyl compounds and further demonstrate its potential for
the synthesis of chiral amines. The development of more
effective catalytic systems and the expansion of other carbonyl
compounds are currently underway.
8 For leading references on cinchona alkaloid catalyzed
transamination of a-keto esters, see: (a) X. Xiao, Y. Xie,
C. Su, M. Liu and Y. Shi, J. Am. Chem. Soc., 2011, 133,
12914; (b) F. Xue, X. Xiao, H. Wang and Y. Shi,
Tetrahedron, 2012, 68, 6862; (c) X. Xiao, M. Liu, C. Rong,
F. Xue, S. Li, Y. Xie and Y. Shi, Org. Lett., 2012, 14, 5270.
9 For leading references on isomerization of chiral imines, see:
(a) R. D. Guthrie, W. Meister and D. J. Cram, J. Am. Chem.
Soc., 1967, 89, 5288; (b) R. D. Guthrie, D. A. Jaeger,
W. Meister and D. J. Cram, J. Am. Chem. Soc., 1971, 93,
5137; (c) D. A. Jaeger and D. J. Cram, J. Am. Chem. Soc.,
1971, 93, 5153.
Acknowledgements
The authors gratefully acknowledge the National Basic Research
Program of China (973 program, 2010CB833300) and the
Chinese Academy of Sciences for the nancial support.
Notes and references
1 For a recent book, see: T. C. Nugent, Chiral Amines Synthesis:
Methods, Developments and Applications, Wiley-VCH, 10 For leading references on isomerization of chiral
Germany, 2010.
2 For leading reviews on asymmetric reductive amination, see:
(a) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029; (b)
triuoromethyl imines, see: (a) V. A. Soloshonok and
T. Ono, J. Org. Chem., 1997, 62, 3030; (b) V. A. Soloshonok,
T. Ono and I. V. Soloshonok, J. Org. Chem., 1997, 62, 7538;
(c) J. Xiao, X. Zhang and C. Yuan, Heteroat. Chem., 2000,
11, 536; (d) V. A. Soloshonok, H. Ohkura and
M. Yasumoto, J. Fluorine Chem., 2006, 127, 924; (e)
V. A. Soloshonok, H. Ohkura and M. Yasumoto, J. Fluorine
Chem., 2006, 127, 930; (f) V. A. Soloshonok, H. T. Catt and
T. Ono, J. Fluorine Chem., 2009, 130, 512; (g)
V. A. Soloshonok, H. T. Catt and T. Ono, J. Fluorine Chem.,
2010, 131, 261.
¨
V. I. Tararov and A. Borner, Synlett, 2005, 203; (c)
A. F. Abdel-Magid and S. J. Mehrman, Org. Process Res.
Dev., 2006, 10, 971; (d) R. P. Tripathi, S. S. Verma, J. Pandey
and V. K. Tiwari, Curr. Org. Chem., 2008, 12, 1093; (e)
T. C. Nugent and M. El-Shazly, Adv. Synth. Catal., 2010,
352, 753; (f) J. G. de Vries and N. Mrsic, Catal. Sci. Technol.,
2011, 1, 727.
3 For leading reviews on asymmetric nucleophilic addition of
imines, see: (a) D. Enders and U. Reinhold, Tetrahedron: 11 For leading references on chiral base-catalyzed
Asymmetry, 1997, 8, 1895; (b) S. Kubayashi and H. Ishitani,
Chem. Rev., 1999, 99, 1069; (c) H. Ding and G. K. Friestad,
Synthesis, 2005, 2815; (d) T. Vilaivan, W. Bhanthumnavin
and Y. Sritana-Anant, Curr. Org. Chem., 2005, 9, 1315; (e)
G. K. Friestad and A. K. Mathies, Tetrahedron, 2007, 63,
2541; (f) D. Ferraris, Tetrahedron, 2007, 63, 9581; (g)
C. S. Marques and A. J. Burke, ChemCatChem, 2011, 3, 635;
(h) S. Kobayashi, Y. Mori, J. S. Fossey and M. M. Salter,
isomerization of triuoromethyl imines, see: (a)
V. A. Soloshonok, A. G. Kirilenko, S. V. Galushko and
V. P. Kukhar, Tetrahedron Lett., 1994, 35, 5063; (b)
V. A. Soloshonok and M. Yasumoto, J. Fluorine Chem.,
2007, 128, 170; (c) V. Michaut, F. Metz, J.-M. Paris and
J.-C. Plaquevent, J. Fluorine Chem., 2007, 128, 500; (d)
J. Han, A. E. Sorochinsky, T. Ono and V. A. Soloshonok,
Curr. Org. Synth., 2011, 8, 281; (e) Y. Wu and L. Deng,
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 2389–2392 | 2391