COMMUNICATIONS
high yields and high enantiomeric ratios: K. Hatanaka, J. J. Kodanko,
M. Oestreich, L. E. Overman, L. A. Pfeiffer, J. W. Ziller, unpublished
results.
presence of the strong base PMP, palladacycles 16 and 19 are
generated. Although 16 and 19 possess three and two b-
hydrogen atoms, respectively, these intermediates do not
undergo b-hydride elimination since a tightly bound ligand
(BINAP or the conjugate base of the protected isatin) would
have to dissociate to generate a vacant coordination site.[24, 25]
Therefore, palladacycle 16 is stable, while 19 undergoes b-
methoxide elimination to generate 15.[26] In contrast, when the
Heck reactions are carried out in the presence of the weaker
base TBP, TBP hydrotriflate is acidic enough to shift the
equilibrium from the palladacyclic intermediates toward the
cationic palladium(ii) species 17 and 18, which undergo facile
b-hydride elimination to generate conventional Heck prod-
ucts 14 and 15.
[11] For other examples of s-alkylpalladium(ii) complexes containing
conformationally free b-hydrogen atoms, see: a) R. Arnek, K.
Zetterberg, Organometallics 1987, 6, 1230 ± 1235; b) L. Zhang, K.
Zetterberg, Organometallics 1991, 10, 3806 ± 3813.
[12] H. Ucar, K. Vanderpoorten, S. Cacciaguerra, S. Spampinato, J. P.
Stables, P. Depovere, M. Isa, B. Masereel, J. Delarge, J. H. Poupaert, J.
Med. Chem. 1998, 41, 1138 ± 1145.
[13] a) V. Farina, B. Krishnan, J. Am. Chem. Soc. 1991, 113, 9585 ± 9595;
b) V. Farina, S. Kapadia, B. Krishnan, C. Wang, L. S. Liebeskind, J.
Org. Chem. 1994, 59, 5905 ± 5911.
[14] The carbonyl group of the isatin was protected as a ketal to prevent
side reactions caused by the high electrophilicity of this group. For the
synthesis of isatin ketals, see: M. Rajopadhye, F. D. Popp, J. Med.
Chem. 1988, 31, 1001 ± 1005.
[15] Crystallographic data (excluding structure factors) for the structures
reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no.
CCDC-155109 (15) and CCDC-155110 (O-tosyl derivate of 15).
Copies of the data can be obtained free of charge on application to
CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (44)1223-
336-033; e-mail: deposit@ccdc.cam.ac.uk).
[16] HPLC analysis using a Daicel Chiralcel OD-H column (hexane/
iPrOH 90:10) provided baseline resolution of enantiomers.
[17] Thus far attempts to chemically correlate 14 and 15 have failed. As a
result, the absolute configuration of 14 is assigned on the basis of its
similar HPLC characteristics on a chiral stationary phase to 15,[16] and
by analogy to our earlier model studies.[10]
[18] a) The full set of data is provided in the Supporting Information and
copies of NMR specta are available from the authors. b) The 31P NMR
spectrum with 1H decoupling with signals being assigned is depicted in
the Supporting Information.
[19] G. R. Hoel, R. A. Stockland, G. K. Anderson, F. T. Ladipo, J.
Braddock-Wilking, N. P. Rath, J. C. Mareque-Rivas, Organometallics
1998, 17, 1155 ± 1165.
In summary, an asymmetric Heck reaction has been
successfully employed for the enantioselective construction
(er> 99:1) of the quaternary stereocenter of an advanced
intermediate en route to quadrigemine C (1). The unusual
outcome of the Pd0 ± BINAP-catalyzed cyclization of 11 is
rationalized by the intermediacy of palladacycle 19, which
preferentially suffers b-methoxide elimination. The corre-
sponding palladacyclic intermediate 16 lacking a methoxy
group on the b-carbon atom is a stable compound. Pallada-
cycle 16 is a rare example of a stable s-alkylpalladium
complex that has b-hydrogen atoms residing on a freely
rotating b-carbon atom.[11] To the best of our knowledge, this
is the first example of the isolation of an intermediate of this
type in a Heck reaction.
Received: January 8, 2001 [Z16380]
[20] A colorless salt, see: G. A. Crispino, R. Breslow, J. Org. Chem. 1992,
57, 1849 ± 1855.
[21] Reactions in the presence of TBP were not completed within 4 h.
After 4 h, 11 gave 14 in 40% yield (40 mol% catalyst loading) and 12
provided 15 in 75% yield (100 mol% catalyst loading).
[1] For recent reviews of the Heck reaction, see: a) I. P. Beletskaya, A. V.
Cheprakov, Chem. Rev. 2000, 100, 3009 ± 3066; b) A. de Meijere, F. E.
Meyer in Metal-Catalyzed Cross-Coupling Reactions (Eds.: F. Die-
derich, P. J. Stang), Wiley-VCH, Weinheim, 1998, Chap. 3; c) J. T.
Link, L. E. Overman in Metal-Catalyzed Cross-Coupling Reactions
(Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998,
Chap. 6.
[2] For recent reviews of asymmetric Heck reactions, see: a) Y. Donde,
L. E. Overman in Catalytic Asymmetric Synthesis (Ed.: I. Ojima),
2nd ed., Wiley, New York, 2000, Chap. 8G; b) M. Shibasaki in
Advances in Metal-Organic Chemistry (Ed.: L. S. Liebeskind), JAI,
Greenwich, 1996, pp. 119 ± 151.
[22] The pKa values for the conjugate acids of PMP (pKa (50% aqueous
ethanol) 9.54[23a] and pKa (acetonitrile) 18.7[23b]) and TBP (pKa
(50% aqueous ethanol) 2.70[23a] and pKa (acetonitrile) 11.8[23c]
)
have been measured in aqueous ethanol and estimated in acetonitrile;
DpKa is about 7 pKa units in both solvents.
[23] a) J. C. Day, J. Am. Chem. Soc. 1981, 103, 7355 ± 7357; b) M.
Dworniczak, K. T. Leffek, Can. J. Chem. 1990, 68, 1657 ± 1661; c) C.
Schlesener, C. Amatore, J. K. Kochi, J. Am. Chem. Soc. 1984, 106,
7472 ± 7482.
[24] For a review of b-hydride elimination of s-alkyl transition metal
complexes, see: J. Cross in The Chemistry of the Metal ± Carbon Bond,
Vol. 2 (Eds.: F. R. Hartley, S. Patai), Wiley, New York, 1985, Chap. 8.
[25] The six-membered palladacycle ring likely also contributes to the
stability of 19.[11, 24]
[26] For syn as well as anti b-alkoxide eliminations terminating intra-
molecular Heck reactions, see: a) J.-F. Nguefack, V. Bolitt, D. Sinou, J.
Chem. Soc. Chem. Commun. 1995, 1893 ± 1894; b) K. Bedjeguelal, L.
Joseph, V. Bolitt, D. Sinou, Tetrahedron Lett. 1999, 40, 87 ± 90.
[3] Recent reviews of asymmetric synthesis of quaternary centers: a) E. J.
Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 402 ± 415; Angew.
Chem. Int. Ed. 1998, 37, 388 ± 401; b) K. Fuji, Chem. Rev. 1993, 93,
2037 ± 2066.
[4] a) A. Ashimori, B. Bachand, L. E. Overman, D. J. Poon, J. Am. Chem.
Soc. 1998, 120, 6477 ± 6487; b) A. Ashimori, B. Bachand, M. A. Calter,
S. P. Govek, L. E. Overman, J. Am. Chem. Soc. 1998, 120, 6488 ± 6499.
[5] U. Anthoni, C. Christophersen, P. H. Nielsen in Alkaloids: Chemical
and Biological Perspectives, Vol. 13 (Ed.: W. S. Pelletier), Pergamon,
New York, 1999, pp. 163 ± 236, and references therein.
[6] Total syntheses of physostigmine and physovenine: T. Matsuura, L. E.
Overman, D. J. Poon, J. Am. Chem. Soc. 1998, 120, 6500 ± 6503.
[7] Total syntheses of the chimonanthines: L. E. Overman, D. V. Paone,
B. A. Stearns, J. Am. Chem. Soc. 1999, 121, 7702 ± 7703.
Â
Â
[8] F. Gueritte-Voegelein, T. Sevenet, J. Pusset, M. T. Adeline, B. Gillet,
Â
J. C. Beloeil, D. Guenard, P. Potier, J. Nat. Prod. 1992, 55, 923 ± 930.
[9] a) L. E. Overman, J. F. Larrow, B. A. Stearns, J. M. Vance, Angew.
Chem. 2000, 112, 219 ± 221; Angew. Chem. Int. Ed. 2000, 39, 213 ± 215;
b) S. B. Hoyt, L. E. Overman, Org. Lett. 2000, 2, 3241 ± 3244.
[10] We have recently demonstrated in a model study that (Z)-a-aryl-a,b-
unsaturated o-triflatoanilides smoothly undergo Heck cyclization in
1442
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4008-1442 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 8