2152
S. Banerjee et al. / Tetrahedron Letters 53 (2012) 2149–2152
Biochemical Aspects;; CRC Press: Boca Raton, 1992. pp 1–260; (d) Krief, A.;
12. (a) Welton, T. Chem. Rev. 1999, 99, 2071–2084; (b) Parvulescu, V. I.; Hardacre,
C. Chem. Rev. 2007, 107, 2615–2665.
Hevesi, L. In Organoselenium Chemistry; Springer: Berlin, 1988; Vol. 1,; (e) Krief,
A In Comprehensive Organometallic Chemistry; Trost, B. M., Ed.; Pergamon Press:
Oxford, 1991; pp 85–192.
13. (a) Boon, J. A.; Levinsky, J. A.; Pflug, J. I.; Wilkes, J. S. J. Org. Chem. 1986, 51, 480–
483; (b) Harjani, J. R.; Nara, S. J.; Salunkhe, M. M. Tetrahedron Lett. 2002, 43,
1127–1130; (c) Namboodiri, V. V.; Varma, R. S. Chem. Commun. 2002, 342–343;
(d) Sun, W.; Xia, C.-G.; Wang, H.-W. Tetrahedron Lett. 2003, 44, 2409–2411; (e)
Qiao, K.; Yakoyama, C. Chem. Lett. 2004, 33, 472–473.
14. (a) Ranu, B. C.; Banerjee, S. Org. Lett. 2005, 7, 3049–3052; (b) Ranu, B. C.; Saha,
A.; Banerjee, S. Eur. J. Org. Chem. 2008, 519–523; (c) Ranu, B. C.; Adak, L.;
Banerjee, S. Tetrahedron Lett. 2008, 49, 4613–4617.
2. (a) Ham, J.; Yang, I.; Kang, H. H. J. Org. Chem 2004, 69, 3236–3239. and
references cited therein; (b) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett.
2000, 2, 2019–2022; (c) Goux, C.; Lhoste, P.; Sinou, D. Tetrahedron Lett. 1992,
33, 8099–8102; (d) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205–3220; (e)
Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449; (f)
Taniguchi, N. J. Org. Chem. 2004, 69, 6904–6906; (g) Guindon, Y.; Frenette, R.;
Fortin, R.; Rokach, J. J. Org. Chem. 1983, 48, 1357–1359; (h) Martin, M. T.;
Thomas, A. M.; York, D. G. Tetrahedron Lett 2002, 43, 2145–2147. and references
cited therein.
3. (a) Perlmutter, P. Conjugated Addition Reaction in Organic Synthesis; Oxford:
Pergamon, 1992. pp 1–394; (b) Ranu, B. C.; Bhar, S.; Sarkar, D. C. Tetrahedron
Lett. 1991, 32, 2811–2812; (c) Srivastava, N.; Banik, B. K. J. Org. Chem. 2003, 68,
2109–2114; (d) Sreekumar, R.; Rugmimi, P.; Padmakumar, R. Tetrahedron Lett.
1997, 38, 6557–6560; (e) Sebti, S.; Saber, A.; Rhihil, A. Tetrahedron Lett. 1994,
35, 9399–9400.
15. Representative procedure for the synthesis of benzyl phenyl sulfide (Table 2, entry
2a).
A mixture of benzyl bromide (171 mg, 1 mmol), diphenyl disulfide
(131 mg, 0.6 mmol), PPh3 (184 mg, 0.7 mmol), and [pmIm]Br21 (94 mg,
0.4 mmol) was stirred at 75 °C for 1.5 h (TLC). The reaction mixture was
extracted with Et2O, and the organic layer was washed with brine (2 Â 5 mL)
and dried (Na2SO4). Evaporation of solvent left the crude product which was
purified by column chromatography over silica gel (hexane) to afford the pure
product, benzyl phenyl sulfide (168 mg, 84%) as a colorless liquid; IR (neat)
3058, 3028, 2923, 1581, 1495, 1479, 1452, 1438, 1238, 1090, 1068, 1024 cmÀ1
;
4. (a) Alam, M. M.; Varala, R.; Adapa, S. R. Tetrahedron Lett. 2003, 44, 5115–5119;
(b) Cheng, S.; Comer, D. D. Tetrahedron Lett. 2002, 43, 1179–1181; (c) Bandini,
M.; Cozzi, P. G.; Giacomoni, M.; Melchiorre, P.; Selva, S.; Ronchi, A. U. J. Org.
Chem. 2002, 67, 3700–3704; (d) Zahouily, M.; Abrouki, Y.; Rayadh, A.; Sebti, S.;
Dhimane, H.; David, M. Tetrahedron Lett 2003, 44, 2463–2465. and references
cited therein.
1H NMR (300 MHz, CDCl3) 4.21 (s, 2H), 7.32–7.41 (m, 10H); 13C NMR
d
(75 MHz, CDCl3) d 39.5, 127.6, 128.0, 129.0 (2C), 129.3 (2C), 129.5 (2C), 130.3
(2C), 136.9, 137.9. The spectroscopic (FT-IR, 1H NMR and 13C NMR) data are in
good agreement with the reported values.9b The remaining ionic liquid was
washed with ether, dried under vacuum, and reused five times without
appreciable loss of catalytic activity.
5. (a) Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2003, 59, 2417–2421; (b) Yadav,
J. S.; Reddy, B. V. S.; Baishya, G. J. Org. Chem. 2003, 68, 7098–7100; (c) Ranu, B.
C.; Dey, S. S. Tetrahedron 2004, 60, 4183–4188.
6. (a) Movassagh, B.; Shamsipoor, M. Synlett 2005, 121–122; (b) Mukherjee, C.;
Tiwari, P.; Misra, A. K. Tetrahedron Lett. 2006, 47, 441–445; (c) Bieber, L. W.; Sa,
A. C. P. F.; Menezes, P. H.; Goncalves, S. M. C. Tetrahedron Lett. 2001, 42, 4597–
4599.
The similar procedure was used to carry out all the reactions listed in Tables 2
and 3 and in case of 1,4-addition reaction (Table 3), activated alkenes were
used in place of alkyl halides. All the products are known in the literature and
were properly characterized by spectroscopic (IR, 1H NMR and 13C NMR) data.
These spectroscopic data are in good agreement with the reported values
(references provided in Tables 2 and 3).
Although this procedure was described on mmol scale, gram-scale reactions
also provided uniform results. It was also observed that use of [bmim]Br in
place of [pmim]Br provided comparable results.
7. Zhao, X.; Yu, Z.; Yan, S.; Wu, S.; Liu, R.; He, W.; Wang, L. J. Org. Chem. 2005, 70,
7338–7341.
8. Nishino, T.; Okada, M.; Kuroki, T.; Watanabe, T.; Nishiyama, Y.; Sonoda, N. J.
Org. Chem. 2002, 67, 8696–8698.
9. (a) Ranu, B. C.; Mandal, T.; Samanta, S. Org. Lett. 2003, 5, 1439–1441; (b) Ranu,
B. C.; Mandal, T. J. Org. Chem. 2004, 69, 5793–5795; (c) Ranu, B. C.; Mandal, T.
Synlett 2004, 1239–1242.
10. Duane Brown, W. Biochim. Biophys. Acta 1960, 44, 365.
11. (a) Overman, L. E.; Smoot, J.; Overman, J. D. Synthesis 1974, 59–60; (b)
Schonberg, A.; Barakat, M. Z. J. Chem. Soc. 1949, 892; (c) Overman, L. E.;
Matzinger, D.; Connor, E. M. O.; Overman, J. D. J. Am. Chem. Soc. 1974, 96, 6081–
6089.
16. Cohen, T.; Guo, B.-S. Tetrahedron 1986, 42, 2803–2808.
17. Ikeshita, K.-I.; Kihara, N.; Ogawa, A. Tetrahedron Lett. 2005, 46, 8773–8775.
18. Wang, J.; Li, H.; Mei, Y.; Lou, B.; Xu, D.; Xie, D.; Guo, H.; Wang, W. J. Org. Chem.
2005, 70, 5678–5687.
19. Wallner, O. A.; Szabo, K. J. J. Org. Chem. 2005, 70, 9215–9221.
20. Valeria, V. A. C.; Fernando, B.; Antonella, D. C.; Luigi, M.; Ivan, R.; Luca, S. J. Org.
Chem. 1999, 64, 8122–8126.
21. This ionic liquid was prepared by the reaction of N-methylimidazole and
pentyl bromide following a reported procedure (Namboodiri, V. V.; Varma, R. S.
Org. Lett. 2002, 4, 3161–3163).