4834
J. Am. Chem. Soc. 2001, 123, 4834-4836
Scheme 1
Total Synthesis of (+)-Phorboxazole A
Amos B. Smith, III,* Patrick R. Verhoest,
Kevin P. Minbiole, and Michael Schelhaas
Department of Chemistry, Monell Chemical Senses Center
and Laboratory for Research on the Structure of Matter
UniVersity of PennsylVania, Philadelphia, PennsylVania 19104
ReceiVed February 26, 2001
In 1995 Searle and Molinski reported the isolation of phor-
boxazoles A (1) and B (2), isomeric oxazole-containing mac-
rolides, from the marine sponge Phorbas sp. endemic to the
western coast of Australia (Scheme 1).1 The relative and absolute
stereochemistries of the phorboxazoles were secured via a
combination of NMR analysis, degradation studies, and synthetic
correlation.2 When tested against the NCI panel of 60 human
tumor cell lines, the phorboxazoles displayed virtually unsurpassed
cytotoxicity, exhibiting a mean GI50 of 1.58 × 10-9 M. Although
the exact mechanism of action remains unknown, studies dem-
onstrate that phorboxazole A (1) arrests the cell cycle at the S
phase and does not affect tubulin. Given the potent cytotoxicity
and the possibility of a new mechanism of action, the phorbox-
azoles were selected by the NCI for in vivo trials.2a
The combination of the outstanding antimitotic activity,
architectural complexity, and extreme scarcity has led to wide
interest in the synthetic community.3 The first total synthesis of
phorboxazole A was reported by Forsyth and co-workers in 1998;4
shortly thereafter Evans and Fitch reported the completion of
phorboxazole B.5 In 1997 we embarked on the synthesis of these
challenging marine natural products; subsequently we disclosed
assembly of two subtargets exploiting a modified Petasis-Ferrier
union-rearrangement tactic for the stereocontrolled construction
of the two cis-fused tetrahydropyrans.3n,o In this communication,
we describe the synthesis of the C(3-28) vinyl stannane, the
C(33-46) lactone, their union via a bifunctional oxazole linchpin,
and completion of the phorboxazole A synthetic venture.
From the retrosynthetic perspective, disconnections of phor-
boxazole A (1) at the C(1) macrolactone, the C(2-3) and C(28-
29) linkages led to side chain subtarget 3 and macrolide precursor
4 (Scheme 1). A Wittig transform at C(19-20) further dissected
4 into aldehyde 56 and salt 6, the syntheses of which were
described previously.3n,o Continuing with this analysis, discon-
nection of subtarget 3 at C(32-33) and C(40-41) revealed vinyl
stannane 7, vinyl iodide 8, and the bifunctional oxazole 9.
Construction of the C(40-41) linkage would entail a Stille
coupling, while oxazole 9, possessing the pseudobenzylic bromide
and the triflate moieties, was envisaged as a novel bidirectional
linchpin to unite the side chain with the macrocycle. Importantly,
the coupling strategy possessed considerable flexibility from the
tactical perspective (vide infra).
Assembly of the side chain of phorboxazole began with known
Brown allylation7 adduct (+)-10 (Scheme 2).8,9 Methylation of
the hydroxyl [MeOTf, 2,6-di-tert-butyl-4-methylpyridine (DT-
BMP)],10 followed by ozonolysis furnished aldehyde (-)-11 in
81% yield for two steps. Although Wittig olefination of (-)-11
with methyl alkyne 12a (R ) Me) led to a disappointing mixture
of olefins (E/Z ca. 2.2:1), condensation with the commercially
available phosphonate salt 12b (R ) TMS) in THF afforded enyne
(-)-13 in good yield with acceptable selectivity (97%, 5.5:1 E/Z).
The use of a PhCH3/THF (1:1) solvent system improved the E/Z
ratio at the expense of both yield and reproducibility (72%, 7.5:1
E/Z). Removal of the TMS group (K2CO3), followed by Sharpless
dihydroxylation11 of the enyne12,13 (AD-Mix â; 7:1 dr) and
acetonide formation then provided (+)-14. Terminal methylation
(1) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126.
(2) (a) Searle, P. A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J.
Am. Chem. Soc. 1996, 118, 9422. (b) Molinski, T. F. Tetrahedron Lett. 1996,
37, 7879.
(3) (a) Lee, C. S.; Forsyth, C. J. Tetrahedron Lett. 1996, 37, 6449. (b)
Cink, R. D.; Forsyth, C. J. J. Org. Chem. 1997, 62, 5672. (c) Ahmed, F.;
Forsyth, C. J. Tetrahedron Lett. 1998, 39, 183. (d) Ye, T.; Pattenden, G.
Tetrahedron Lett. 1998, 39, 319. (e) Pattenden, G.; Plowright, A. T.; Tornos,
J. A.; Ye, T. Tetrahedron Lett. 1998, 39, 6099. (f) Paterson, I.; Arnott, E. A.
Tetrahedron Lett. 1998, 39, 7185. (g) Wolbers, P.; Hoffman, H. M. R.
Tetrahedron 1999, 55, 1905. (h) Misske, A. M.; Hoffman, H. M. R.
Tetrahedron 1999, 55, 4315. (i) Williams, D. R.; Clark, M. P.; Berliner, M.
A. Tetrahedron Lett. 1999, 40, 2287. (j) Williams, D. R.; Clark, M. P.
Tetrahedron Lett. 1999, 40, 2291. (k) Wolbers, P.; Hoffman, H. M. R.
Synthesis, 1999, 5, 797. (l) Evans, D. A.; Cee, V. J.; Smith, T. E.; Santiago,
K. J. Org. Lett. 1999, 1, 87. (m) Wolbers, P.; Misske, A. M.; Hoffmann, H.
M. R. Tetrahedron Lett. 1999, 40, 4527. (n) Smith, A. B., III; Verhoest, P.
R.; Minbiole, K. P.; Lim, J. J. Org. Lett. 1999, 1, 909. (o) Smith, A. B., III;
Minbiole, K. P.; Verhoest, P. R.; Beauchamp, T. J. Org. Lett. 1999, 1, 913.
(p) Wolbers, P.; Hoffman, H. M. R.; Sasse, F. Synlett 1999, 11, 1808. (q)
Schaus, J. V.; Panek, J. S. Org. Lett. 2000, 2, 469. (r) Pattenden, G.; Plowright,
A. T. Tetrahedron Lett. 2000, 41, 983. (s) Rychnovsky, S. D.; Thomas, C. R.
Org. Lett. 2000, 2, 1217. (t) Williams, D. R.; Clark, M. P.; Emde, U.; Berliner,
M. A. Org. Lett. 2000, 2, 3023. (u) Greer, P. B.; Donaldson, W. A. Tetrahedron
Lett. 2000, 41, 3801. (v) Evans, D. A.; Cee, V. J.; Smith, T. E.; Fitch, D. M.;
Cho, P. S. Angew. Chem., Int. Ed. 2000, 39, 2533.
(6) Although aldehyde 5 was the original subtarget for the central pyran,
revised aldehyde (+)-23 was ultimately employed (Scheme 4).
(7) Brown, H. C.; Ramachandran, P. V. Pure Appl. Chem. 1991, 63, 307.
(8) Clive, D. L. J.; Keshava Murthy, K. S.; Wee, A. G. H.; Prasad, J. S.;
da Silva, G. V. J.; Majewski, M.; Anderson, P. C.; Haugen, R. D.; Heerze, L.
D. J. Am. Chem. Soc. 1988, 110, 6914 (see Supporting Information).
(9) The enantiomeric excess (ee) of alcohol (+)-10 was determined to be
94% via Mosher ester analysis: (a) Dale, J. A.; Mosher, H. S. J. Am. Chem.
Soc. 1973, 95, 512. (b) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org.
Chem. 1973, 38, 2143. (c) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa,
H. J. Am. Chem. Soc. 1991, 113, 4092.
(10) The biphenyltertbutyl silyl (BPS) moiety had a tendency to migrate
to the secondary hydroxyl when more standard conditions (NaH, MeI) were
employed.
(11) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroder, G.; Sharpless,
K. B. J. Am. Chem. Soc. 1988, 110, 1968.
(4) Forsyth, C. J.; Ahmed, F.; Cink, R. D.; Lee, C. S. J. Am. Chem. Soc.
1998, 120, 5597.
(5) (a) Evans, D. A.; Fitch, D. M. Angew. Chem., Int. Ed. 2000, 39, 2536.
(b) Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J. J. Am. Chem. Soc.
2000, 122, 10033.
10.1021/ja0105055 CCC: $20.00 © 2001 American Chemical Society
Published on Web 05/01/2001