December 2006
2491
Table 2. Substrate Specificity in the Oxidation Catalyzed by AKR1C12
there is no study on the enzymes responsible for these metab-
olisms of GGOH. The present study is the first report that
identifies the GGOH-metabolizing enzyme with high cat-
alytic activity. GGOH is contained in many plants, which are
ingested as herbal medicines and dietary foods.31) The exoge-
nous GGOH is probably diffused into the cells as demon-
strated in previous studies on its biological actions and me-
tabolism using cultured cells.25—31,33) The high expression of
AKR1C12 and AKR1C24 in the rodent gastrointestinal tract,
together with their high catalytic activity towards GGOH,
suggests their roles in the metabolism of ingested GGOH to
prevent its biological effects on the cells of the tissues. On
the other hand, AKR1C12 is identical to AKRa that is en-
coded in the interleukin-3-regulated gene in mouse myeloid
cells, in which the enzyme is thought to be involved in the
production or catabolism of autocrine factors that promote
the proliferation and/or lineage commitment of early myeloid
progenitors.13) The newly found substrates, GGOH and the
hydroxysteroids, of the enzyme may be the autocrine factors
required in the differentiation of myeloid cells, although fur-
ther studies are needed to understand the significance of the
up-regulation of the enzyme expression in hematopoiesis.
Km
(mM)
kcat
kcat/Km
Substrate
Alicyclic alcohols
ꢂ1
(minꢂ1
)
(minꢂ1 mM
)
S-Indan-1-ol
S-Tetralol
cis-Benzene dihydrodiol
trans-Benzene dihydrodiol
2-Cyclohexen-1-ol
Prostaglandin F2a
63
90
800
760
1080
100
13
14
24
9.9
13
0.20
0.16
0.03
0.01
0.01
0.001
0.12
Aliphatic alcohols
Geranylgeraniol
Farnesol
Nerol
Geraniol
0.4
4.2
41
0.34
1.7
2.1
0.85
0.40
0.05
0.03
42
1.1
1-Nonanol
240
0.14
0.0006
20a-Hydroxysteroids
5-Pregnene-3b,20a-diol
5a-Pregnan-20a-ol-3-one
4-Pregnen-20a-ol-3-one
5b-Pregnan-20a-ol-3-one
17b-Hydroxysteroids
5a-Androstan-17b-ol-3-one
5b-Androstane-3a,17b-diol
5b-Androstan-17b-ol-3-one
Testosterone
2.2
2.5
5.5
5.0
1.2
1.2
1.7
0.14
0.55
0.48
0.31
0.03
10
24
13
36
32
2.3
3.8
1.5
3.9
1.1
0.23
0.16
0.12
0.11
0.03
17b-Estradiol
REFERENCES
3a-Hydroxysteroids
4-Androsten-3a-ol-17-one
4-Pregnen-3a-ol-20-one
5b-Androstan-3a-ol-17-one
35
9.0
10
2.5
0.66
0.15
0.07
0.07
0.02
1) Jez J. M., Flynn T. G., Penning T. M., Biochem. Pharmacol., 54, 639—
647 (1997).
2) Hyndman D., Bauman D. R., Heredia V. V., Penning T. M., Chem. Biol.
Interact., 143—144, 499—525 (2003).
3) Penning T. M., Endocr. Rev., 18, 281—305 (1997).
4) Matsunaga T., Shintani S., Hara A., Drug Metab. Pharmacokin., 21,
1—18 (2006).
5) Vergnes L., Phan J., Stolz A., Reue K., J. Lipid Res., 44, 503—511
(2003).
6) Ishikura S., Nakajima S., Kaneko T., Shintani S., Usami N., Yamamoto
I., Carbone V., El-Kabbani O., Hara A., “Enzymology and Molecular
Biology of Carbonyl Metabolism 12,” eds. by Weiner H., Plapp B.,
Lindahl R., Maser E., Purdue University Press, West Lafayette, 2005,
pp. 341—351.
7) Ishikura S., Nakajima S., Carbone V., El-Kabbani O., Hara A., “Enzy-
mology and Molecular Biology of Carbonyl Metabolism 12,” eds. by
Weiner H., Plapp B., Lindahl R., Maser E., Purdue University Press,
West Lafayette, 2005, pp. 324—331.
10.5, respectively, which are also the same as those of
AKR1C24. Additionally, the NADꢃ-linked S-tetralol dehy-
drogenase of AKR1C12 was inhibited by hexestrol, dienstrol,
zearalenone and genistein (IC50 values were 1.5, 5.0, 4.7 and
40 mM, respectively), which show similar inhibitory potency
for AKR1C24. Furthermore, the amino acid sequences of
AKR1C12 and AKR1C24 are 91% identical. Therefore,
AKR1C12 and AKR1C24 are identical enzyme species.
Role of AKR1C12 It has been proposed that AKR1C24
plays a role in the inactivation of androgen and estrogen, and
the production of active progesterone in the gastrointestinal
tract and other tissues of rats.24) The tissue expression pat-
terns of the mRNAs for AKR1C2424) and AKR1C125) are al-
most the same. The identification of AKR1C12 with the
mouse counterpart of AKR1C24 further supports the pro-
posed physiological role of this enzyme species in the steroid
metabolism. In addition, we emphasize another role of this
enzyme in the metabolism of GGOH. As AKR1C12 did,
AKR1C24 efficiently oxidized GGOH (Kmꢄ0.6 mM and
kcat/Kmꢄ2.8 minꢂ1 mMꢂ1) in our preliminary study. GGOH,
an intermediate product in the mevalonate pathway, is uti-
lized for protein prenylation, a post-translational maturation
of diverse proteins involved in cell proliferation.25—27) The
exposure of GGOH to the cultured cells also results in the in-
hibition of cell proliferation,28) apoptosis,29,30) and activation
of peroxisome proliferators-activated receptors (a and g).31)
In contrast to the biological actions of GGOH, literature on
its metabolism is little. GGOH is suggested to be metabo-
lized to its diphosphate product by a kinase,25) and to ger-
anylgeranoic acid via geranylgeranial by aldehyde and alco-
hol dehydrogenases.32) In rat thymocytes, GGOH is metabo-
lized to (R)-2,3-dihydrogeranylgeranoic acid.33) However,
8) Deyashiki Y., Ohshima K., Nakanishi M., Sato K., Matsuura K., Hara
A., J. Biol. Chem., 270, 10461—10467 (1995).
9) Matsumoto K., Endo S., Ishikura S., Matsunaga T., Tajima K., El-Kab-
bani O., Hara A., Biol. Pharm. Bull., 29, 539—542 (2006).
10) Ishikura S., Usami N., Nakajima S., Kameyama A., Shiraishi H., Car-
bone V., El-Kabbani O., Hara A., Biol. Pharm. Bull., 27, 1939—1945
(2004).
11) Ikeda S., Okuda-Ashitaka E., Masu Y., Suzuki T., Watanabe K.,
Nakano M., Shingu K., Ito S., FEBS Lett., 459, 433—437 (1999).
12) Ishikura S., Horie, K., Sanai M., Matsumoto K., Hara A., Biol. Pharm.
Bull., 28, 1075—1078 (2005).
13) Du Y., Tsai S., Keller J. R., Williams S. C., J. Biol. Chem., 275,
6724—6732 (2000).
14) Nakanishi M., Deyashiki Y., Ohshima K., Hara A., Eur. J. Biochem.,
228, 381—387 (1995).
15) Bradford M. M., Anal. Biochem., 72, 248—254 (1976).
16) Tajima K., Hashizaki M., Yamamoto K., Mizutani T., Drug. Metab.
Dispos., 20, 816—820 (1992).
17) Platt K. L., Oesch F., Synthesis, 7, 449—450 (1977).
18) Jarabak J., Arch. Biochem. Biophys., 291, 334—338 (1991).
19) Jarabak J., Arch. Biochem. Biophys., 292, 239—243 (1992).
20) Shimada H., Oginuma M., Hara A., Imamura Y., Chem. Res. Toxicol.,
17, 1145—1150 (2004).
21) Williamson J. R., Corkey B. E., Method Enzymol., 13, 434—513
(1969).