2005, 61, 10827; (d) E. Valeur and M. Bradley, Chem. Soc. Rev.,
2009, 38, 606.
2 (a) M. Kohn and R. Breinbauer, Angew. Chem., Int. Ed., 2004,
43, 3106; (b) S. H. Cho, E. J. Yoo, I. Base and S. Chang, J. Am.
Chem. Soc., 2005, 127, 16046; (c) B. Shen, D. M. Makley and
J. N. Johnston, Nature, 2010, 465, 1027.
3 (a) W.-K. Chan, C.-M. Ho, M.-K. Wong and C.-M. Che, J. Am.
Chem. Soc., 2006, 128, 14796. CuBr-catalyzed oxidative amide
synthesis from alkynes and amines by Ji et al., see: (b) W. Wei,
X.-Y. Hu, X.-W. Yan, Q. Zhang, M. Cheng and J.-X. Ji, Chem.
Commun., 2012, 48, 305.
4 (a) A. Tillack, I. Rudloff and M. Beller, Eur. J. Org. Chem., 2001,
523; (b) W.-J. Yoo and C.-J. Li, J. Am. Chem. Soc., 2006,
128, 13064; (c) J. W. Bode and S. S. Sohn, J. Am. Chem. Soc.,
2007, 129, 13798; (d) J. W. W. Chang and P. W. H. Chan, Angew.
Chem., Int. Ed., 2008, 47, 1138; (e) J. Wang, J. Li, F. Xu and
Q. Shen, Adv. Synth. Catal., 2009, 351, 1363; (f) J. W. W. Chang,
T. M. U. Ton, S. Tania, P. C. Taylor and P. W. H. Chan, Chem.
Commun., 2010, 46, 922.
5 (a) T. Naota and S.-I. Murahashi, Synlett, 1991, 693;
(b) C. Gunanathan, Y. Ben-David and D. Milstein, Science,
2007, 317, 790; (c) L. U. Nordstrøm, H. Vogt and R. Madsen,
J. Am. Chem. Soc., 2008, 130, 17672; (d) A. J. A. Watson,
A. C. Maxwell and J. M. J. Williams, Org. Lett., 2009, 11, 2667;
(e) T. Zweifel, J.-V. Naubron and H. Grutzmacher, Angew. Chem.,
Int. Ed., 2009, 48, 559; (f) C. Chen and S. H. Hong, Org. Biomol.
Chem., 2011, 9, 20; (g) H. Zeng and Z. Guan, J. Am. Chem. Soc.,
2011, 133, 1159.
Scheme 3 Proposed reaction mechanism.
between an amine and an Au(III) ion in aqueous medium. The
reaction of A with an aldehyde gives an alkoxy radical (B)
which affords an amide as the product via loss of a hydrogen
radical. Oxygen acts as the oxidant for the re-oxidation of the
Au(I) to the Au(III) ion to complete the catalytic cycle.
Mechanistic studies have been conducted to support the above
reaction mechanism. Addition of TEMPO and diyldibenzene
(radical scavengers) significantly suppressed the coupling reaction
of 1a or 1i with 2a (Schemes S1a and S1b in ESIw), suggesting the
involvement of radical species. Generation of amine radicals
through the reaction of amines with gold ions13 and in gold(III)/
gold(I) redox processes in aqueous medium has been reported.8a,14
Thus, an aminyl radical (A) generated from the reaction between
an amine and an Au(III) ion in aqueous medium is proposed.
The reaction of 1i (34% 18O-incorporation) and 2a was
conducted in H218O (Scheme S1d, ESIw) to give the product
amide 3i with 30% 18O-incorporation as confirmed by ESI-MS
analysis, indicating that the amide carbonyl oxygen atom
originated from the aldehyde. No TEMPO adduct formation
with 1i as observed by 1H NMR and chromatography analysis
suggests that an acyl radical would not be generated under the
reaction conditions (Scheme S1h, ESIw).15 Thus, an alkoxy
radical (B) generated from the reaction of an aminyl radical
(A) and an aldehyde is suggested.
6 B. Gnanaprakasam and D. Milstein, J. Am. Chem. Soc., 2011,
133, 1682.
7 (a) G. O’Mahony and A. K. Pitts, Org. Lett., 2010, 12, 2024;
(b) C. L. Allen, S. Davulcu and J. M. J. Williams, Org. Lett., 2010,
12, 5096.
8 (a) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180; (b) Z. Li,
C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239; (c) A. Arcadi,
Chem. Rev., 2008, 108, 3266; (d) E. Jimenez-Nunez and
A. M. Echavarren, Chem. Rev., 2008, 108, 3326; (e) D. J. Gorin,
B. D. Sherry and F. D. Toste, Chem. Rev., 2008, 108, 3351;
(f) A. Corma, A. Leyva-perez and M. J. Sabater, Chem. Rev.,
2011, 111, 1657.
9 (a) S. K. Klitgaard, K. Egeblad, U. V. Mentzel, A. G. Popov,
T. Jensen, E. Taarning, I. S. Nielsen and C. H. Christensen, Green
Chem., 2008, 10, 419; (b) B. Xu, L. Zhou, R. J. Madix and
C. M. Friend, Angew. Chem., Int. Ed., 2010, 49, 394;
(c) Y. Wang, D. Zhu, L. Tang, S. Wang and Z. Wang, Angew.
Chem., Int. Ed., 2011, 50, 8917; (d) J.-F. Soule, H. Miyamure and
S. Kobayashi, J. Am. Chem. Soc., 2011, 133, 18550.
10 (a) V. K.-Y. Lo, Y. Liu, M.-K. Wong and C.-M. Che, Org. Lett.,
2006, 8, 1529; (b) V. K.-Y. Lo, M.-K. Wong and C.-M. Che, Org.
Lett., 2008, 10, 517; (c) M.-Z. Wang, M.-K. Wong and C.-M. Che,
Chem.–Eur. J., 2008, 14, 8353; (d) V. K.-Y. Lo, K. K.-Y. Kung,
M.-K. Wong and C.-M. Che, J. Organomet. Chem., 2009, 694, 583;
(e) M.-Z. Wang, C.-Y. Zhou, Z. Guo, E. L.-M. Wong,
M.-K. Wong and C.-M. Che, Chem.–Asian J., 2011, 6, 812;
(f) K. K.-Y. Kung, G.-L. Li, L. Zou, H.-C. Chong, Y.-C. Leung,
K.-H. Wong, V. K.-Y. Lo, C.-M. Che and M.-K. Wong,
Org. Biomol. Chem., 2012, 10, 925.
The reaction between 1i and 2a in air gave 3i in 50% isolated
yield (Scheme S1i, ESIw). When the reaction was carried out
under a N2 atmosphere, 3i was found in 5% isolated yield,
indicating that oxygen in air is important. Under an oxygen
atmosphere (balloon), no amide product was detected. This
would be attributed to the oxidation of aminyl radical species
by oxygen.16 In this regard, oxygen acting as an oxidant for
the oxidation of Au(I) to Au(III) is suggested.17
In conclusion, we have developed an efficient gold-catalyzed
amide synthesis from aldehydes and amines with high
functional group tolerance in aqueous medium under mild reaction
conditions. This method allows an easy access to amides from the
reaction of aromatic, aliphatic and polyhydroxyl oligosaccharide-
based aldehydes with secondary amines.
11 C. Y. Wu and C. H. Wong, Chem. Commun., 2011, 47, 6201.
12 For aldehyde conversion analyzed by LC-MS analysis, see ESIw.
13 (a) M. Aslam, L. Fu, M. Su, K. Vijayamohanan and V. P. Dravid,
J. Mater. Chem., 2004, 14, 1795; (b) J. D. S. Newman and
G. J. Blanchard, Langmuir, 2006, 22, 5882.
14 A. S. K. Hashmi, Angew. Chem., Int. Ed., 2005, 44, 6990.
15 Z. Liu, J. Zhang, S. Chen, E. Shi, Y. Xu and X. Wan,
Angew. Chem., Int. Ed., 2012, DOI: 10.1002/anie.201108763.
16 J. H. Horner, F. N. Martinez, O. M. Musa, M. Newcomb and
H. E. Shahin, J. Am. Chem. Soc., 1995, 117, 11124.
We thank the financial support of Hong Kong Research
Grants Council (PolyU 5031/11p) and The Hong Kong
Polytechnic University (PolyU Departmental General Research
Funds, Competitive Research Grants for Newly Recruited
Junior Academic Staff and SEG PolyU01). We also thank Prof.
Jun-Long Zhang of Peking University for helpful discussion on
mechanistic studies.
17 (a) G. B. Shul’pin, A. E. Shilov and G. Suss-Fink, Tetrahedron
Lett., 2001, 42, 7253; (b) A. Corma, I. Domıguez, A. Domenech,
V. Fornes, C. J. Gomez-Garcıa, T. Rodenas and M. J. Sabater,
J. Catal., 2009, 265, 238; (c) J. Xie, H. Li, J. Zhou, Y. Cheng and
C. Zhu, Angew. Chem., Int. Ed., 2012, 124, 1252.
Notes and references
1 (a) J. M. Humphrey and A. R. Chamberlin, Chem. Rev., 1997,
97, 2243; (b) S.-Y. Han and Y.-A. Kim, Tetrahedron, 2004,
60, 2447; (c) C. A. G. N. Montalbetti and V. Falque, Tetrahedron,
c
4114 Chem. Commun., 2012, 48, 4112–4114
This journal is The Royal Society of Chemistry 2012