1062
M. Zhang, X.-F. Wu / Tetrahedron Letters 54 (2013) 1059–1062
Catal. 2006, 348, 1029–1032; (i) Bandini, M.; Melucci, M.; Piccinelli, F.; Sinisi,
R.; Tommasi, S.; Umani-Ronchi, A. Chem. Commun. 2007, 4519–4521; (j)
Inagaki, T.; Yamada, Y.; Phong, L. T.; Furuta, A.; Ito, J.-i. .; Nishiyama, H. Synlett
2009, 253–256; (k) Gajewy, J.; Kwit, M.; Gawronski, J. Adv. Synth. Catal. 2009,
351, 1055–1063; (l) Das, S.; Addis, D.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem.
Soc. 2010, 132, 1770–1771; (m) Marinos, N. A.; Enthaler, S.; Driess, M.
ChemCatChem 2010, 2, 846–853; (n) Enthaler, S.; Eckhardt, B.; Inoue, S.;
Irran, E.; Driess, M. Chem. Asian J. 2010, 5, 2027–2035; (o) Enthaler, S.; Schröder,
K.; Inoue, S.; Eckhardt, B.; Junge, K.; Beller, M.; Driess, M. Eur. J. Org. Chem. 2010,
4893–4901; (p) Enthaler, S. Catal. Lett. 2011, 141, 55–61; (q) Enthaler, S. Catal
Sci. Technol. 2011, 1, 104–110; (r) Enthaler, S.; Inoue, S. Chem. Asian J. 2012, 7,
169–175; (s) Enthaler, S.; Weidauer, M. Chem. Eur. J. 2012, 18, 1910–1913.
2. (a) Kung, P. P.; Huang, B. W.; Zhang, G.; Zhou, J. Z.; Wang, J.; Digits, J. A.;
Skaptason, J.; Yamazaki, S.; Neul, D.; Zientek, M.; Elleraas, J.; Mehta, P.; Yin, M.
J.; Hickey, M. J.; Gajiwala, K. S.; Rodgers, C.; Davies, J. F.; Gehring, M. R. J. Med.
Chem. 2010, 53, 499–503; (b) Armelin, E.; Franco, L.; Rodriguez-Galan, A.;
Puiggali, J. Macromol. Chem. Phys. 2002, 203, 48–58; (c) Glomb, M. A.; Pfahler, C.
J. Biol. Chem. 2001, 276, 41638–41647.
aldehydes, to synthesise different substituted amides. As shown in
Table 1, all the reactions proceeded smoothly and gave desired
products in good to excellent isolated yields (Table 1, entries 1–
11). Electron-withdrawing and -donating substitutents including
meta position (such as –CN, amide group) on the aryl ring of alde-
hydes were tolerated, and the substituents have significant influ-
ence in the formation of the products. Specifically, arylaldehydes
bearing an electron-withdrawing group gave relatively higher
product yields (Table 1, entries 6, 8, 11, 13) than that of electron-
rich ones. The phenomenon can be explained that the addition of
amine to more electrophilic carbonyl group could favorably form
an alpha-hydroxyl amine intermediate, which is in agreement with
the mechanism proposed in the literature.7 Subsequently, other
representative alkylamines (including n-hexanamine 2b, n-butan-
amine 2c, and cyclohexanamine 2d) were tested to generate differ-
ent N-alkylated amides. The results showed that all the linear
alkylamines can be converted into the corresponding amides in
an efficient manner (Table 1, entries 12–15). However, the bulkier
cyclohexanamine gave only small amount of the expected product,
which is associated with the influence of steric hindrance (Table 1,
entry 16). Interestingly, heteroaryl aldehydes (such as picolinalde-
hyde 1d) could also be employed as a coupling partner (Table 1,
entries 4 and 12), the resulting product might be applicable as a li-
gand for metal catalysis or complex preparations.11 As reported7b
the reaction of aldehydes with secondary amines can give the cor-
responding amides in the presence of H2O2 without any catalyst.
Under this background, we did not test secondary amines under
our reaction conditions. Additionally, pentanal as an example of al-
kyl aldehydes was checked under our standard conditions, but no
amide was formed.
3. (a) Wang, G. W.; Yuan, T. T.; Li, D. D. Angew. Chem., Int. Ed. 2011, 50, 1380–1383.
Angew. Chem. 2011, 123, 1416–1419; (b) Zhang, X. X.; Teo, W. T.; Chan, P. W. H.
J. Organomet. Chem. 2011, 696, 331–337.
4. (a) Gnanaprakasam, B.; Milstein, D. J. Am. Chem. Soc. 2011, 133, 1682–1685; (b)
Zare, A.; Hasaninejad, A.; Moosavi-Zare, A. R.; Parhami, A.; Khalafi-Nezhad, A.
Asian J. Chem. 2009, 21, 1090–1096; (c) Hartwig, J. F. Synlett 2006, 1283–1294;
(d) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131–209; (e)
Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U. Adv. Synth. Catal. 2006, 348,
23–39; (f) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–1449; (g)
Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534–1544; (h) Surry, D. S.; Buchwald, S.
L. Angew. Chem., Int. Ed. 2008, 47, 6338–6361. Angew. Chem. 2008, 120, 6438–
6461.
5. (a) Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. 1948, 70, 4045–4048; (b) Schmidt,
R. F. Ber. Dtsch. Chem. Ges. 1924, 57, 704; (c) Beckmann, E. Chem. Ber. 1886, 89,
988; (d) Ugi, I. Angew. Chem., Int. Ed. 1962, 74, 9; (e) Wolff, L. Justus. Liebigs. Ann.
Chem. 1912, 384, 25.
6. (a) Zhang, M.; Imm, S.; Bähn, S.; Neubert, L.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2012, 51, 3905–3909; (b) Miyasaka, M.; Hirano, K.; Satoh, T.;
Kowalczyk, R.; Bolm, C.; Miura, M. Org. Lett. 2011, 13, 359–361; (c) Xiao, B.;
Gong, T. J.; Xu, J.; Liu, Z. J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466–1474; (d)
Wang, Y.; Zhu, D. P.; Tang, L.; Wang, S. J.; Wang, Z. Y. Angew. Chem., Int. Ed.
2011, 50, 8917–8921; (e) Driller, K. M.; Prateeptongkum, S.; Jackstell, R.; Beller,
M. Angew. Chem., Int. Ed. 2011, 50, 537–541; (f) Gnanaprakasam, B.; Milstein, D.
J. Am. Chem. Soc. 2011, 133, 1682–1685; (g) Wu, X.-F.; Neumann, H.; Beller, M.
Chem. Asian J. 2010, 5, 2168–2172; (h) Neumann, J. J.; Rakshit, S.; Droge, T.;
Glorius, F. Angew. Chem., Int. Ed. 2009, 48, 6892–6895; (i) Kurokawa, T.; Kim,
M.; Du Bois, J. Angew. Chem., Int. Ed. 2009, 48, 2777–2779; (j) Zare, A.;
Hasaninejad, A.; Moosavi-Zare, A. R.; Parhami, A.; Khalafi-Nezhad, A. Asian. J.
Chem. 2009, 21, 1090–1096; (k) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41,
1440–1449; (l) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534–1544; (m) Surry, D.
S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338–6361; (n) Kantchev, E.
A. B.; O’Brien, C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768–2813; (o)
Li, Z. G.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc. 2007, 129,
12058–12059; (p) He, L.; Yu, J.; Zhang, J.; Yu, X. Q. Org. Lett. 2007, 9, 2277–2280.
7. For selected examples on oxidative amidation, see: (a) Ghosh, S. C.; Ngiam, J. S.
Y.; Chai, C. L. L.; Seayad, A. M.; Dang, T. T.; Chen, A. Adv. Synth. Catal. 2012, 354,
1407–1412; (b) Tank, R.; Pathak, U.; Vimal, M.; Bhattacharyya, S.; Pandey, L. K.
Green Chem. 2011, 13, 3350–3354; (c) Allen, C. L.; Davulcu, S.; Williams, J. M. J.
Org. Lett. 2010, 12, 5096–5099; (d) Dam, J. H.; Osztrovszky, G.; Nordstrom, L. U.;
Madsen, R. Chem. Eur. J. 2010, 16, 6820–6827; (e) Woo, W. J.; Li, C. J. J. Am. Chem.
Soc. 2006, 128, 13064–13065; (f) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan,
X. Angew. Chem., Int. Ed. 2012, 51, 3231–3235; (g) Porcheddu, A.; De Luca, L.
Adv. Synth. Catal. 2012, 354, 2949–2953; (h) Reddy, K. R.; Maheswari, C. U.;
Venkateshwar, M.; Kantam, M. L. Eur. J. Org. Chem. 2008, 3619–3622; (i) Cadoni,
R.; Porcheddu, A.; Giacomelli, G.; De Luca, L. Org. Lett. 2012, 14, 5014–5017.
8. (a) Zhang, M.; Imm, S.; Bähn, S.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
2011, 50, 11197–11201. Angew. Chem. 2011, 123, 11393–11397; (b) Yang, W.;
Fu, H.; Song, Q. J.; Zhang, M.; Ding, Y. Q. Organometallics 2011, 30, 77–83; (c)
Jones, M. B.; Newell, B. S.; Hoffert, W. A.; Hardcastle, K. I.; Shores, M. P.;
MacBeth, C. E. Dalton Trans. 2010, 39, 401–410; (d) Zhang, Z.; Leitch, D. C.; Lu,
M.; Patrick, B. O.; Schafer, L. L. Chem. Eur. J. 2007, 13, 2012–2022; (e) Hoerter, J.
M.; Otte, K. M.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 5177–
5183; (f) Thomson, R. K.; Bexrud, J. A.; Schafer, L. L. Organometallics 2006, 25,
4069–4071.
In summary, we have developed a zinc-catalyzed oxidative ami-
dation of arylaldehydes that allows directly employing alkylamines
under solvent-free conditions. Compared to previously known oxi-
dative amidation catalysts, ZnBr2 is comparably inexpensive and
can be conveniently used without special precautions. A wide
range of products bearing different functionalized groups is conve-
niently accessible in reasonable to excellent isolated yields. The
significant advantages of this synthetic protocol make it a practical
and environmentally benign pathway to synthesize N-alkylated
arylamides, which is highly important for organic chemistry.
Acknowledgments
The financial support from the state of Mecklenburg-Vorpomm-
ern and the Bundesministerium für Bildung und Forschung (BMBF)
is gratefully acknowledged. The authors also thank the support and
general advice from Professor Dr. Matthias Beller and Dr. Helfried
Neumann (LIKAT).
Supplementary data
Supplementary data associated with this article can be found, in
the
online
version,
at
9. For reviews on zinc-catalyzed reactions, see: (a) Wu, X.-F. Chem. Asian J. 2012,
7, 2502–2509; (b) Wu, X.-F.; Neumann, H. Adv. Synth. Catal. 2012, 354, 3141–
3160.
10. (a) Wu, X.-F. Chem. Eur. J. 2012, 18, 8912–8915; (b) Wu, X.-F. Tetrahedron Lett.
2012, 53, 3397–3399; (c) Wu, X.-F. Tetrahedron Lett. 2012, 53, 4328–4331; (d)
Song, Z.-Z.; Gong, J.-L.; Zhang, M.; Wu, X.-F. Asian J. Org. Chem. 2012, 1, 214–
217; (e) Wu, X.-F. Tetrahedron Lett. 2012, 53, 6123–6126; (f) Wu, X.-F.; Bheeter,
C. B.; Neumann, H.; Dixneuf, P. H.; Beller, M. Chem. Commun. 2012, 48, 12237–
12239.
References and notes
1. (a) Bette, V.; Mortreux, A.; Lehmann, C. W.; Carpentier, J.-F. Chem. Commun.
2003, 332–333; (b) Bette, V.; Mortreux, A.; Ferioli, F.; Martelli, G.; Savoia, D.;
Carpentier, J.-F. Eur. J. Org. Chem. 2004, 3040–3045; (c) Bette, V.; Mortreux, A.;
Savoia, D.; Carpentier, J.-F. Tetrahedron 2004, 60, 2837–2842; (d) Mastranzo, V.
M.; Quinterno, L.; Anaya de Parrodi, C.; Juaristi, E.; Walsh, P. J. Tetrahedron
2004, 60, 1781–1789; (e) Ushio, H.; Mikami, K. Tetrahedron Lett. 2005, 46,
2903–2906; (f) Bette, V.; Mortreux, A.; Savoia, D.; Carpentier, J.-F. Adv. Synth.
Catal. 2005, 347, 289–302; (g) Gérard, S.; Pressel, Y.; Riant, O. Tetrahedron:
Asymmetry 2005, 16, 1889–1891; (h) Park, B.-M.; Mun, S.; Yun, J. Adv. Synth.
11. Yang, W.; Fu, H.; Song, Q. J.; Zhang, M.; Ding, Y. Q. Organometallics 2011, 30, 77–
83.