H
C. Feng et al.
Letter
Synlett
L. L.; Chen, A. J. Org. Chem. 2012, 77, 8007. (e) Goh, K. S.; Tan, C.-
H. RSC Adv. 2012, 2, 5536. (f) Liu, X.; Jensen, K. F. Green Chem.
2012, 14, 1471. (g) Li, G.-L.; Kung, K. K.-Y.; Wong, M.-K. Chem.
Commun. 2012, 48, 4112. (h) Zhu, M.; Fujita, K.-i.; Yamaguchi, R.
J. Org. Chem. 2012, 77, 9102. (i) Krabbe, S. W.; Chan, V. S.;
Franczyk, T. S.; Shekhar, S.; Napolitano, J.; Presto, C. A.; Simanis,
J. A. J. Org. Chem. 2016, 81, 10688.
After completion of the reaction monitored by thin layer chro-
matography (TLC), water (10 mL) was added, and the reaction
mixture was extracted with ethyl acetate (3 × 20 mL). The
organic layers were collected, combined, washed with water
(3 × 20 mL), dried with anhydrous Na2SO4, and concentrated
under vacuum. The pure product was obtained by directly
passing through a silica gel (200–300 mesh) column to give a
white powder a (0.91 g, 87% yield).
(8) Jiang, D. -H.; He, T.; Ma, L.; Wang, Z.-Y. RSC Adv. 2014, 4, 64936.
(9) Firouzabadi, H.; Sardarian, A. R.; Badparva, H. Synth. Commun.
1994, 24, 601.
(10) Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S. Eur. J. Org.
Chem. 2009, 430.
(11) Theerthagiri, P.; Lalitha, A.; Arunachalam, P. N. Tetrahedron Lett.
2010, 51, 2813.
(12) Anxionnat, B.; Guérinot, A.; Reymond, S.; Cossy, J. Tetrahedron
Lett. 2009, 50, 3470.
(13) Mukhopadhyay, M.; Reddy, M. M.; Maikap, G. C.; Iqbal, J. J. Org.
Chem. 1995, 60, 2670.
(14) Lakouraj, M. M.; Movassagh, B.; Fasihi, J. Synth. Commun. 2000,
30, 821.
(15) Sanz, R.; Martínez, A.; Guilarte, V.; Álvarez-Gutiérrez, J. M.;
Rodríguez, F. Eur. J. Org. Chem. 2007, 4642.
(16) Shakeri, M. S.; Tajik, H.; Niknam, K. J. Chem. Sci. 2012, 124, 1025.
(17) Karimian, E.; Akhlaghinia, B.; Ghodsinia, S. S. E. J. Chem. Sci.
2016, 128, 429.
(18) Posevins, D.; Suta, K.; Turks, M. Eur. J. Org. Chem. 2016, 1414.
(19) Katkar, K. V.; Chaudhari, P. S.; Akamanchi, K. G. Green Chem.
2011, 13, 835.
(20) Khalafi-Nezhad, A.; Foroughi, H. O.; Doroodmandab, M. M.;
Panahi, F. J. Mater. Chem. 2011, 21, 12842.
(21) Zhao, X.-N.; Hu, H.-C.; Zhang, F.-J.; Zhang, Z.-H. Appl. Catal. A.:
Gen. 2014, 482, 258.
(22) Khaksar, S.; Fattahi, E.; Fattahi, E. Tetrahedron Lett. 2011, 52,
5943.
Compound a
1H NMR (CDCl3, 400 MHz): δ = 7.80 (m, 2 H), 7.78–7.25 (m, 8 H),
6.51 (s, 1 H), 4.64 (d, J = 5.8 Hz, 2 H) ppm. 13C NMR (CDCl3, 100
MHz): δ = 167.4, 138.2, 134.4, 131.6, 128.8, 128.6, 127.9, 127.6,
127.0, 44.1 ppm.
(31) Typical Experimental Procedure for the Reaction of Various
Nitriles and Acetic Esters
A mixture of 3-methylbenzonitrile (5 mmol), benzyl acetate (6
mmol), and Fe(ClO4)3·H2O (5 mol%) was placed in a round-bot-
tomed flask. Then, the reaction mixture was heated at 80 °C for
5 h. After completion of the reaction monitored by thin layer
chromatography (TLC), water (10 mL) was added, and the reac-
tion mixture was extracted with ethyl acetate (3 × 20 mL). The
organic layers were collected, combined, washed with water (3
× 20 mL), dried with anhydrous Na2SO4, and concentrated under
vacuum. The pure product was obtained by directly passing
through a silica gel (200–300 mesh) column to give a white
powder n (0.96 g, 86% yield).
Compound n
1H NMR (CDCl3, 400 MHz): δ = 7.61–7.55 (m, 2 H), 7.34–7.28 (m,
7 H), 6.55 (s, 1 H), 4.62 (d, J = 5.64 Hz, 2 H), 2.37 (s, 3 H) ppm. 13
C
NMR (CDCl3, 100 MHz): δ = 167.6, 138.4, 138.3, 134.3, 132.3,
128.8, 128.4, 127.9, 127.7, 127.6, 123.9, 44.1, 21.3 ppm.
(32) Typical Experimental Procedure for the Reaction of Nitriles
and di-tert-Butyl Malonate
A mixture of 2-(3, 4-dichlorophenyl)acetonitrile (5 mmol), di-
tert-butyl malonate (3 mmol), and Fe(ClO4)3·H2O (5 mol%) was
placed in a round-bottomed flask. Then, the reaction mixture
was heated at 80 °C for 5 h. After completion of the reaction
monitored by thin layer chromatography (TLC), water (10 mL)
was added and the reaction mixture was extracted with ethyl
acetate (3 × 20 mL). The organic layers were collected, com-
bined, washed with water (3 × 20 ml), dried over anhydrous
Na2SO4, and concentrated under vacuum. The pure product was
obtained by directly passing through a silica gel (200–300
mesh) column to give a white powder 1m (1.08 g, 84% yield).
Compound 1m
(23) Qu, G.-R.; Song, Y.-W.; Niu, H.-Y.; Guo, H.-M.; John, S.-F. RSC Adv.
2012, 2, 6161.
(24) Mokhtary, M.; Najafizadeh, F. E-J. Chem. 2012, 9, 576.
(25) Mokhtary, M.; Goodarzi, G. Chin. Chem. Lett. 2012, 23, 293.
(26) Tamaddon, F.; Tavakoli, F. J. Mol. Catal. A.: Chem. 2011, 337, 52.
(27) Baum, J. C.; Milne, J. E.; Murry, J. A.; Thiel, O. R. J. Org. Chem.
2009, 74, 2207.
(28) Nasr-Esfahani, M.; Montazerozohori, M.; Karami, Z. Org. Prep.
Proced. Int. 2016, 48, 321.
(29) Hanzawa, Y.; Kasashima, Y.; Tomono, K.; Mino, T.; Sakamoto,
M.; Fujita, T. J. Oleo. Sci. 2012, 61, 393.
(30) Typical Experimental Procedure for the Reaction of Benzoni-
trile and Esters (Benzyl, sec-Alkyl and Primary Alkyl Esters)
A mixture of benzonitrile (5 mmol), benzyl acetate (6 mmol),
and Fe(ClO4)3·H2O (5 mol%) was placed in a round-bottomed
flask. Then, the reaction mixture was heated at 80 °C for 5 h.
1H NMR (400 MHz, CDCl3): δ = 7.41–7.35 (m, 2 H), 7.12–7.10 (m,
1 H), 5.31 (s, 1 H), 3.40 (s, 2 H), 1.32 (s, 9 H) ppm. 13C NMR (100
MHz, CDCl3): δ = 168.9, 135.6, 132.7, 131.2, 131.2, 130.6, 128.6,
51.6, 43.5, 28.7 ppm. HRMS: m/z calcd for C12H15Cl2NO [M + H]+:
259.0531; found: 259.0533.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–H