Catalysis Science & Technology
Paper
toxic gas to avoid the problematic use of gaseous CO.
Further, this methodology has experimental simplicity, is
additive, base, and ligand-free, and has a simple workup at
ambient temperature. Amides and esters were obtained in
good to excellent yields and selectivity by this procedure
which could be done using a continuous flow reactor to
scale-up, appropriate for industry applications.
19 D. Ben-Ishai, E. Babad and Z. Bernstein, Isr. J. Chem.,
1968, 6, 551–567.
20 R. O. Rocha, M. O. Rodrigues and B. A. D. Neto, ACS Omega,
2020, 5, 972–979.
21 Y. Uozumi, T. Arii and T. Watanabe, J. Org. Chem., 2001, 66,
5272–5274.
22 Q. Hu, L. Wang, C. Wang, Y. Wu, Z. Ding and R. Yuan, RSC
Adv., 2017, 7, 37200–37207.
Conflicts of interest
23 J. R. Martinelli, D. A. Watson, D. M. M. Freckmann, T. E.
Barder and S. L. Buchwald, J. Org. Chem., 2008, 73,
7102–7107.
There are no conflicts to declare.
24 J. Wannberg and M. Larhed, J. Org. Chem., 2003, 68,
5750–5753.
Acknowledgements
25 A.-R. Hajipour, Z. Tavangar-Rizia and N. Iranpoor, RSC Adv.,
2016, 6, 78468–78476.
26 N. Iranpoor, H. Firouzabadi, E. Etemadi-Davan, A.
Nematollahi and H. R. Firouzi, New J. Chem., 2015, 39,
6445–6452.
This work was supported by the Shiraz University Research
Council.
Notes and references
1 (a) C. F. J. Barnard, Organometallics, 2008, 27(21), 5402–5422;
(b) S. J. Jeon and P. J. Walsh, J. Am. Chem. Soc., 2003, 125,
9544–9545.
2 Z. Zhang, Y. Liu, M. Gong, X. Zhao, Y. Zhang and J. Wang,
Angew. Chem., Int. Ed., 2010, 49, 1139–1142.
3 (a) X. F. Wu, H. Neumann, A. Spannenberg, T. Schulz, H.
Jiao and M. J. Beller, J. Am. Chem. Soc., 2010, 132,
14596–14602; (b) Q. Liu, G. J. Li, J. He, J. Liu, P. Li and A.
Lei, Angew. Chem., Int. Ed., 2010, 49, 3371–3374.
4 A. Brennfuhrer, H. Neumann and M. Beller, Angew. Chem.,
Int. Ed., 2009, 48, 4114–4133.
27 D. N. Sawant, Y. S. Wagh, K. D. Bhatte and B. M. Bhanage,
J. Org. Chem., 2011, 76, 5489–5494.
28 L. R. Odell, F. Russo and M. Larhed, Synlett, 2012, 23,
685–698.
29 K. Natte, A. Dumrath, H. Neumann and M. Beller, Angew.
Chem., Int. Ed., 2014, 53, 1–6.
30 T. Morimoto, K. Yamasaki, A. Hirano, K. Tsutsumi, N.
Kagawa, K. Kakiuchi, Y. Harada, Y. Fukumoto, N. Chatani
and T. Nishioka, Org. Lett., 2009, 11(8), 1777–1780.
31 J. G. A. Hallberg and M. Larhed, J. Comb. Chem., 2003, 5,
350–352.
5 X. F. Wu, H. Neumann and M. Beller, Chem. Soc. Rev.,
2011, 40, 4986–5009.
6 J. Li, F. Xu, Y. Zhang and Q. Shen, J. Org. Chem., 2009, 74,
2575–2577.
7 K. Kumar, A. Zapf, D. Michalik, A. Tillack, T. Heinrich,
H. Bottcher, M. Arlt and M. Beller, Org. Lett., 2004, 6(1),
7–10.
8 S. Prakash, A. X. Garg, A. P. Heidenheim and A. A. House,
Nephrol., Dial., Transplant., 2004, 19(10), 2553–2558.
9 A. Izcovich, C. Gonzalez Malla, M. Manzotti, H. N. Catalano
and G. Guyatt, Neurology, 2014, 83(13), 1170–1177.
10 D. J. Biedenbach and R. N. Jones, J. Clin. Microbiol.,
1994, 32(2), 559–562.
11 O. OE, Fundam. Clin. Pharmacol., 2014, 28(4), 382–393.
12 M. Beller, B. Cornils, C. D. Frohning and C. W.
Kohlpaintner, J. Mol. Catal. A: Chem., 1995, 104, 17–85.
13 J. Wannberg and M. Larhed, J. Org. Chem., 2003, 68,
5750–5753.
14 X. Qi, Ch. Li, L. B. Jiang, W. Q. Zhanga and X. Wu, Catal. Sci.
Technol., 2016, 6, 3099–3107.
15 S. Györke, V. Lukyanenko and I. Györke, J. Physiol.,
1997, 500(2), 297–309.
32 W. Guo, L.-Q. Lu, Y. Wang, Y.-N. Wang, J.-R. Chen and W.-J.
Xiao, Angew. Chem., Int. Ed., 2015, 54, 2265–2269.
33 (a) M. Majek and A. J. V. Wangelin, Angew. Chem., Int. Ed.,
2014, 53, 1–6; (b) L. Gu, C. Jin and J. Liu, Green Chem.,
2015, 17, 3733–3736.
34 (a) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem.
Rev., 2013, 113, 5322–5363; (b) K. L. Skubi, T. R. Blum and
T. P. Yoon, Chem. Rev., 2016, 116, 10035–10074; (c) N. A.
Romero and D. A. Nicewicz, Chem. Rev., 2016, 116,
10075–10166; (d) J. Xuan, Z.-G. Zhang and W. J. Xiao, Angew.
Chem., Int. Ed., 2015, 54, 15632–15641; (e) Y. Chen, L.-Q. Lu,
D.-G. Yu, C.-J. Zhu and W.-J. Xiao, Sci. China: Chem.,
2019, 62, 24–57; ( f ) L. Ren, M. Ran, J. He, Y. Qian and Q.
Yao, Youji Huaxue, 2019, 39, 1583–1595.
35 (a) C. Gosset, S. Pellegrini, R. Jooris, T. Bousquet and L.
Pelinski, Adv. Synth. Catal., 2018, 360, 3401–3405; (b) N.
Micic and A. Polyzos, Org. Lett., 2018, 20, 4663–4666; (c) S. Y.
Chow, M. Y. Stevens, L. Akerbladh, S. Bergman and L. R.
Odell, Chem. – Eur. J., 2016, 22, 9155–9161.
36 (a) Q.-Q. Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L. Q. Lu
and W. J. Xiao, Angew. Chem., Int. Ed., 2015, 54,
11196–11199; (b) X. Jiang, M. M. Zhang, W. Xiong, L. Q. Lu
and W. J. Xiao, Angew. Chem., Int. Ed., 2019, 58, 2402–2406.
37 (a) I. Ryu and N. Sonoda, Angew. Chem., Int. Ed. Engl.,
1996, 35, 1050–1066; (b) I. Ryu, N. Sonoda and D. P. Curran,
Chem. Rev., 1996, 96, 177–194; (c) C. Chatgilialoglu, D. Crich,
M. Komatsu and I. Ryu, Chem. Rev., 1999, 99, 1991–2070; (d)
16 E. C. Rizos, E. E. Ntzani, E. Bika, M. S. Kostapanos and M. S.
Elisaf, Am. J. Health-Syst. Pharm., 2012, 308(10), 1024–1033.
17 D. G. A. Karalis, Adv. Ther., 2017, 34(2), 300–323.
18 G. I. Koldobskii, V. A. Ostrovskii and B. Z. Gidaspov, Chem.
Heterocycl. Compd., 1975, 11, 626–635.
This journal is © The Royal Society of Chemistry 2020
Catal. Sci. Technol.