5250 J. Am. Chem. Soc., Vol. 123, No. 22, 2001
Lee et al.
dissection of epothilone bioactivity patterns into discrete zones
of varying tolerances to structural modification.14
Using totally synthetic derived drug, our laboratory was the
first to conduct in vivo evaluations of epothilone B.15 When it
was found that EpoB itself exhibited a worrisome toxicity profile
(which to our estimation could result in an unacceptably narrow
therapeutic index), we turned to the 12,13-desoxy compound
in the hope of providing greater margins of potential opportunity.
From combined total synthesis and SAR research, it had been
shown that dEpoB is significantly less potent in vitro than EpoB.
It is nonetheless, highly cytotoxic and robust with respect to
MDR deactivation.Our original rationale for pursuing the 12,-
13-deoxy congeners at the time arose from a conjecture that
the enormous cytotoxicity of EpoB itself may be a consequence
of two components. With the epoxide intact, there could well
be a general cytotoxicity component (perhaps arising from the
capacity of the system to function as a DNA alkylating agent).
In addition we theorized that there might be a more specific
mode of action (for instance, tubulin binding) which could be
of potential therapeutic value against transformed cells and
perhaps tumor masses. Our hope was that the nontumor-specific
cytotoxicity, vested in the epoxide linkage of EpoB, would be
substantially abrogated in dEpoB which would nonetheless
retain the mechanistically specific tumor-directed cytotoxicity.
Figure 1. Structure of epothilones.
exhibits significantly higher cytotoxicity than does Taxol against
various cancer cell lines. Furthermore, epothilones are apparently
not susceptible to deactivation through MDR and maintain
activity against resistant tumor cell lines.
We note that epothilones have also recently been constructed
by heterologous expression of the appropriate biosynthesis genes
in productive microorganisms.11 The problem of epothilone
supply may well be resolved by conventional fermentation
augmented by emerging biotechnology. It is also possible that
eventually, other useful analogues could be produced by this
biotransformation protocol (Figure 1).
Given the promising in vitro data associated with epothilones,
given several challenging features in their molecular frameworks
vis-a`-vis chemical synthesis, and given the uncertainties as to
the availability of homogeneous epothilones in bulk via
fermentation, these drugs have attracted significant attention
from the community of synthetic chemists. Indeed, a variety of
total syntheses have been accomplished.12 Our exercises, initially
launched from the perspective of total synthesis,13 enabled a
rather detailed SAR mapping of the drugs and allowed for
Indeed, in vivo experiments based on various mouse models
have consistently demonstrated that dEpoB possesses remarkable
therapeutic potential and is essentially curative against various
sensitive and resistant tumors in xenografts. Due to its impres-
sive in vivo profile, dEpoB has been advanced through
toxicology evaluations in dogs, in expectation of human trials
anticipating its deployment as an anticancer drug.16 The excellent
preclinical in vivo successes realized with dEpoB do not
necessarily prove the validity of our dissection of its cytotoxicity
into a tumor selective component as well as nonspecific toxicity
arising from the epoxide linkage. At the very minimum, this
hypothesis served as a valuable working model in prompting
our interest in the 12,13-desoxy series. The full accounting of
the superior performance of dEpoB remains an intriguing
subject, and clearly merits further investigation.
In building upon the “12,13-desoxy concept” it was appropri-
ate to evaluate the in vivo efficacy of other such agents. In this
spirit we pursued 21-hydroxylated versions of 12,13-desoxy-
epothilones such as dEpoE (1c) and dEpoF (1d).17 As indicated
by in vitro assays, 21-hydroxylated epothilones such as EpoE
and EpoF do not forfeit the activities of the A and B systems.18
Since EpoB is significantly more potent than EpoA, we naturally
placed dEpoF at a higher priority than dEpoE. Furthermore,
we anticipated that the 21-hydroxyl group of dEpoF might
provide advantageous properties relative to the 21-methyl group
of dEpoB in terms of aqueous solubility and might serve as a
handle for further chemical elaborations. While a semi- and total
(10) (a) Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal,
L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C. M. Cancer Res. 1995,
55, 2325. (b) Kowalski, R. J.; Terhaar, E.; Longley, R. E.; Gunasekera, S.
P.; Lin, C. M.; Day, B. V.; Hamel, E. Mol. Biol. Cell 1995, 6, 2137.
(11) (a) Tang, L.; Shah, S.; Chung, L.; Carney, J.; Katz, L.; Khosla, C.;
Julien, B. Science 2000, 287, 640. (b) Molnar, I.; Schupp, T.; Ono, M.;
Zirkle, R. E.; Milnamow, M.; Nowak-Thompson, B.; Engel, N.; Toupet,
C.; Stratmann, A.; Cyr, D. D.; Gorlach, J.; Mayo, J. M.; Hu, A.; Goff, S.;
Schmid, J.; Ligon, J. M. Chem. Biol. 2000, 7, 97. (c) Julien, B.; Shah, S.;
Ziermann, R.; Goldman, R.; Katz, L.; Khosla, C. Gene 2000, 249, 153.
(12) (a) Yang, Z.; He, Y.; Vourloumis, D.; Vallberg, H.; Nicolaou, K.
C. Angew. Chem., Int. Ed. Engl. 1997, 36, 166. (b) Nicolaou, K. C.; Sarabia,
F.; Ninkovic, S.; Yang, Z. Angew. Chem., Int. Ed. Engl. 1997, 36, 525. (c)
Nicolaou, K. C.; He, Y.; Vourloumis, D.; Vallberg, H.; Roschangar, F.;
Sarabia, F.; Ninkovic, S.; Yang, Z.; Trujillo, J. I. J. Am. Chem. Soc. 1997,
119, 7960. (d) Nicolaou, K. C.; Winssinger, N.; Pastor, J.; Ninkovic, S.;
Sarabia, F.; He, Y.; Vourloumis, D.; Yang, Z.; Li, T.; Giannakakou, P.;
Hamel, E. Nature 1997, 387, 268. (e) Nicolaou, K. C.; He, Y.; Roschangar,
F.; King, N. P.; Vourloumis, D.; Li, T. H. Angew. Chem., Int. Ed. 1998,
37, 84. (f) Schinzer, D.; Limberg, A.; Bauer, A.; Bohm, O. M.; Cordes, M.
Angew. Chem., Int. Ed. Engl. 1997, 36, 523. (g) Schinzer, D.; Bauer, A.;
Bohm, O. M.; Limberg, A.; Cordes, M. Chem. Eur. J. 1999, 5, 2483. (h)
Schinzer, D.; Bauer, A.; Schieber, J. Chem. Eur. J. 1999, 5, 2492. (i) May,
S. A.; Grieco, P. A. Chem. Commun. 1998, 1597. (j) Sawada, D.; Shibasaki,
M. Angew. Chem., Int. Ed. 2000, 39, 209. (k) Sawada, D.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 10521. (l) Martin, H. M.;
Drescher, M.; Mulzer, J. Angew. Chem., Int. Ed. 2000, 39, 581. (m) White,
J. D.; Carter, R. G.; Sundermann, K. F. J. Org. Chem. 1999, 64, 684. (n)
White, J. D.; Sundermann, K. F.; Carter, R. G. Org. Lett. 1999, 1, 1431.
(o) Zhu, B.; Panek, J. S. Org. Lett. 2000, 2, 2575.
(14) (a) Su, D.-S.; Balog, A.; Meng, D.; Bertinato, P.; Danishefsky, S.
J.; Zheng, Y.-H.; Chou, T.-C.; He, L.; Horwitz, S. B. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2093. (b) For comprehensive in vitro SAR results, see:
Nicolaou, K. C.; Roschangar, F.; Vourloumis, D. Angew. Chem., Int. Ed.
1998, 37, 2014.
(15) (a) Chou, T. C.; Zhang, X. G.; Harris, C. R.; Kuduk, S. D.; Balog,
A.; Savin, K. A.; Bertino, J. R.; Danishefsky, S. J. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 15798. (b) Chou, T. C.; Zhang, X. G.; Balog, A.; Su, D.
S.; Meng, D. F.; Savin, K.; Bertino, J. R.; Danishefsky, S. J. Proc. Natl.
Acad. Sci. U.S.A. 1998, 95, 9642.
(16) Harris, C. R.; Danishefsky, S. J. J. Org. Chem. 1999, 64, 8434.
(17) (a) Reichenbach, H.; Ho¨fle,; Gerth, K.; Steinmetz, H. (GBF). WO-A
9822461, 1998; Chem. Abstr. 1998, 129, 5346. (b) Ho¨fle, G. In GBF Annual
Report; Walsdorff, J.-H., Ed.; GBF: Braunschweig, 1997.
(18) Ho¨fle, G.; Glaser, N.; Kiffe, M.; Hecht, H. J.; Sasse, F.; Reichenbach,
H. Angew. Chem., Int. Ed. 1999, 38, 1971.
(13) (a) Balog, A.; Meng, D. F.; Kamenecka, T.; Bertinato, P.; Su, D.-
S.; Sorensen, E. J.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1996,
35, 2801. (b) Su, D.-S.; Meng, D. F.; Bertinato, P.; Balog, A.; Sorensen, E.
J.; Danishefsky, S. J.; Zheng, Y. H.; Chou, T. C.; He, L. F.; Horwitz, S. B.
Angew. Chem., Int. Ed. Engl. 1997, 36, 757. (c) Meng, D. F.; Bertinato, P.;
Balog, A.; Su, D. S.; Kamenecka, T.; Sorensen, E. J.; Danishefsky, S. J. J.
Am. Chem. Soc. 1997, 119, 10073. (d) Balog, A.; Harris, C. R.; Savin, K.;
Zhang, X. G.; Chou, T.-C.; Danishefsky, S. J. Angew. Chem., Int. Ed. 1998,
37, 2675. (e) Harris, C. R.; Kuduk, S. D.; Balog, A.; Savin, K.; Glunz, P.
W.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 7050.