(PF6–)4•4H2O
L5
Table 2 Stability constants for H2PO42 binding in the presence and absence
of K+ in (CD3)2SO
Receptora
Kb/m21
L1
900
60
205
35
L1 + 2 equiv. KPF6
L3
L3 + 2 equiv. KPF6
a
Precipitation problems prevented complete titration curves from being
obtained with L2 and L4 in presence and absence of KPF6. b Errors estimated
to be @10%.
K+
M = (bipy)2Ru2+, Re(CO)3Br
Fig. 1 Proposed solution structure of K+Cl2 ion pair complex of L1 and L3.
M = Ru(bipy)22+ or Re(CO)3Br
chromic shift of 7 nm. However in the presence of 1 equiv. of
KPF6 the subsequent addition of H2PO42 had very little effect
on either the emission intensity or lmax. In contrast with Cl2
a
Scheme 2
significant enhancement of intensity was observed.
In summary the anion selectivity properties of new RuII and
ReI bipyridyl bis(benzo-15-crown-5) receptors can be dramat-
ically switched via the binding of K+ cations. In the absence of
Table 1 Stability constants for Cl2 binding in the presence and absence of
K+ in (CD3)2SO
2
K+ the receptors are selective for H2PO4 over Cl2, whereas
Receptor
Ka/m21
following the formation of the intramolecular K+ bis crown
2
sandwich complex the reverse selectivity Cl2 over H2PO4 is
L1
190
660
195
165
55
300
46
55
L1 + 2 equiv. KPF6
exhibited.
L2
We thank Kodak Ltd for a studentship (S. W. D.), the EPSRC
for use of the mass spectrometry service at University College
Swansea and Johnson Matthey for a generous loan of ruthenium
salts.
L2 + 2 equiv. KPF6
L3
L3 + 2 equiv. KPF6
L4
L4 + 2 equiv. KPF6
Notes and References
a Errors estimated to be @10%.
† E-mail: paul.beer@chem.ox.ac.uk
1 M. T. Reetz, C. M. Niemeyer and K. Harris, Angew. Chem., Int. Ed.
Engl., 1991, 30, 1472.
2 D. M. Rudkevich, Z. Brzozka, M. Palys, H. C. Visser, W. Verboom and
D. N. Reinhoudt, Angew. Chem., Int. Ed. Engl., 1994, 33, 467.
3 K. I. Kinnear, D. P. Mousley, E. Arafar and J. C. Lockhart, J. Chem. Soc.,
Dalton Trans., 1994, 3637.
4 P. D. Beer, M. G. B. Drew, R. J. Knubley and M. I. Ogden, J. Chem. Soc.,
Dalton Trans., 1995, 3117.
5 J. Scheerder, J. P. M. van Duynhoven, J. F. J. Engbersen and
D. N. Reinhoudt, Angew. Chem., Int. Ed. Engl., 1996, 35, 1090.
6 J. E. Redman, P. D. Beer, S. W. Dent and M. G. B. Drew, Chem.
Commun., 1998, 231.
7 M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311.
8 F. Szemes, D. Hesek, Z. Chen, S. W. Dent, M. G. B. Drew, A. J. Goulden,
A. R. Graydon, A. Grieve, R. J. Mortimer, J. S. Weightman and
P. D. Beer, Inorg. Chem., 1996, 35, 5868.
9 P. D. Beer, F. Szemes, V. Balzani, C. M. Sala`, M. G. B. Drew, S. W. Dent
and M. Maestri, J. Am. Chem. Soc., 1997, 119, 11 864.
The K+ induced positive cooperativity of Cl2 binding may be
a consequence of favourable electrostatic attraction between the
crown ether bound K+ and bipyridyl amide complexed anion,
and, in addition be due to a favourable allosteric K+ induced
conformational effect. Solution formation of the 1:1 bis-benzo-
15-crown-5 potassium cation intramolecular sandwich complex
results in L1 and L3 forming a pseudo-macrocyclic preorganised
structure which enhances Cl2 recognition but disfavours the
binding of H2PO42 (Fig. 1). Of particular note is the structurally
related macrocyclic receptor L5 which exhibits remarkable
thermodynamic stability and selectivity for Cl2 and does not
bind H2PO42 phosphate at all in (CD3)2SO solutions.9
Preliminary fluorescence emission spectroscopic measure-
ments corroborate the NMR binding studies. The addition of
2
Cl2 and H2PO4 to MeCN solutions of L1 caused significant
increases of up to 140% in luminescence intensity of the MLCT
emission band (lmax = 640 nm) with a concomitant hypso-
Received in Cambridge, UK, 13th January 1998; 8/00356D
826
Chem. Commun., 1998