anticancer properties of syn-imidazolines (nutlins)8 and anti-
imidazolines (SP-4-84).9 The syn-imidazolines were found
to be inhibitors of MDM2, a protein that negatively regulates
the activity of the pro-apoptotic transcription factor p53
(Figure 1).8 The anti-imidazoline SP-4-84, on the other hand,
prevent steric interaction between the bulky silyl group of
the azlactone and R3 group of imine, the endo approach of
the imine was favored resulting in the anti isomer as the
major or sole product (Scheme 1, path a).6
However, by reducing the resonance stabilization of the
carbocation in the dipole by changing the electronic nature
of the R1 substituent, a significant change in diastereoselec-
tivity was observed (entries 1-4, Table 1). Replacement of
Table 1. Influence of R1 Group on Diastereoselectivity
Figure 1. Structure of nutlin (syn-imidazoline), SP-4-84, and anti-
imidazoline (4).
entry
R1
R2
R3
R4
yield
syn:anti
1
2
3
4
Ph
Bn
Me
Me
Me
Me
Me
Ph
Ph
Ph
Ph
Ph
Bn
Bn
Bn
Bn
75
76
12a
72
>5:95
33:67
50:50
90:10
was found to be a drastic enhancer of the chemotherapeutic
efficacy of anticancer agents and modulator of the anti-
apoptotic NF-κB signaling pathway.9 In addition to their
diverse biological activities,10 imidazolines have been utilized
as building blocks for biologically interesting scaffolds11 and
recently attracted considerable interest as ligands for asym-
metric catalysis.12
We previously reported the preparation of anti-imidazo-
lines using a trimethylsilyl chloride mediated 1,3-dipolar
cycloaddition on the azlactone template in good yields and
high diastereoselectivity (Scheme 1).5,6 In view of a potential
a The azlactone for entry 2 is volatile resulting in low isolated yields
the phenyl group by a benzyl or a methyl moiety significantly
eroded the stereoselectivity (entries 1-3, Table 1). Further,
switching the Ph and Me groups at R1 and R2 positions
favored the formation of syn-imidazoline (with respect to
R2 and R3) as the major product in 90:10 ratio (compare
entries 1 and 4, Table 1).
Intrigued by the clear reversal of diastereoselectivity, we
investigated the role of the R1 and R2 substituents on the
azlactone template. The azlactones were prepared from the
N-acetyl amino acids via an EDCI mediated dehydration
process as previously reported.6,13 The N-acyl p-methoxy
phenylglycine (amino acids for entries 10 and 11, Table 2)
was synthesized by employing a modified procedure of
Wasserman et al. (see the Supporting Information).14
Scheme 1. Proposed Transition States for Diastereoselective
Synthesis of anti-Imidazolines
(10) (a) Dardonville, C.; Rozas, I. Med. Res. ReV. 2004, 24, 639-661.
(b) Ueno, M.; Imaizumi, K.; Sugita, T.; Takata, I.; Takeshita, M. Int. J.
Immunopharmacol. 1995, 17, 597-603. (c) Furukawa, O.; Murakami, T.;
Sugita, T.; Ueno, M.; Takata, I.; Tosa, T. Int. J. Immunopharmacol. 1993,
15, 515-519. (d) Schafer, S. G.; Kaan, E. C.; Christen, M. O.; Low-Kroger,
A.; Mest, H. J.; Molderings, G. J. Ann. N.Y. Acad. Sci. 1995, 763, 659-
672. (e) Bousquet, P.; Bruban, V.; Schann, S.; Feldman, J. Pharm. Acta
HelV. 2000, 74, 205-209. (f) Bousquet, P.; Feldman, J. Drugs 1999, 58,
799-812.
(11) (a) Hsiao, Y.; Hegedus, L. S. J. Org. Chem. 1997, 62, 3586-3591.
(b) Puntener, K.; Hellman, M. D.; Kuester, E.; Hegedus, L. S. J. Org. Chem.
2000, 65, 8301-8306.
diverse biological response resulting from the stereochemical
diversity of these imidazoline scaffolds, we report herein a
trimethylsilyl chloride mediated substrate controlled 1,3-
dipolar cycloaddition for the diastereoselective formation of
syn- or anti-imidazolines.
In the case of 2-phenylimidazolines, high diastereoselec-
tivity was attributed to A (1,3) strain, in the azlactone dipole,
which prevents coplanarity of Ph, TMS, and R2 groups. To
(12) (a) Boland, N. A.; Casey, M.; Hynes, S. J.; Matthews, J. W.; Muller-
Bunz, H.; Wilkes, P. Org. Biomol. Chem. 2004, 2, 1995-2002. (b) Casey,
M.; Smyth, M. P. Synlett. 2003, 1, 102-106. (c) Guiu, E.; Claver, C.; Benet-
Buchholz, J.; Castillon, S. Tetrahedron: Asymmetry 2004, 15, 3365-3373.
(d) Busacca, C. A.; Grossbach, D.; Campbell, S. J.; Dong, Y.; Eriksson,
M. C.; Harris, R. E.; Jones, P. J.; Kim, J. Y.; Lorenz, J. C.; McKellop, K.
B.; O’Brien, E. M.; Qiu, F.; Simpson, R. D.; Smith, L.; So, R. C.; Spinelli,
E. M.; Vitous, J.; Zavattaro, C. J. Org. Chem. 2004, 69, 5187-5195. (e)
Busacca, C. A.; Grossbach, D.; So, R. C.; O’Brien, E. M.; Spinelli, E. M.
Org. Lett. 2003, 5, 595-598.
(8) Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.;
Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.;
Liu, E. A. Science 2004, 303, 844-848.
(9) Sharma, V.; Lansdell, T. A.; Peddibhotla, S.; Tepe, J. J. Chem. Biol.
2004, 11, 1689-1699.
(13) (a) Chen, F. M. F.; Kuroda, K.; Benoiton, N. L. Synthesis 1979,
230-232. (b) Mukerjee, A. K. Heterocycles 1987, 26, 1077-1097. (c)
Ivanova, G. G. Tetrahedron 1992, 48, 177-186.
(14) Wasserman, H. H.; Hlasta, D. J.; Tremper, A. W.; Wu, J. S. J. Org.
Chem. 1981, 46, 2999.
5092
Org. Lett., Vol. 7, No. 22, 2005