C. Costa et al. / Carbohydrate Polymers 88 (2012) 537–546
545
this sense, it is possible to extract a purified polysaccharide from
glucuronic acid oligosaccharides using
Research, 344, 1670–1675.
Harada, N., & Maeda, M. (1998). Chemical structure of antithrombin-active rhamnan
sulfate from Monostrom nitidum. Bioscience Biotechnology and Biochemistry, 62,
1647–1652.
Hernández-Garibay, E., Zertuche-González, J., & Pacheco-Ruíz, I. (2011). Isolation
and chemical characterization of algal polysaccharides from the green seaweed
Ulva clathrata (Roth) C. Agardh. Journal of Applied Phycology, 23, 537–542.
Kaeffer, B., Benard, C., Lahaye, M., Blottiere, H. M., & Cherbut, C. (1999). Biological
properties of ulvan, a new source of green seaweed sulfated polysaccharides,
on cultured normal and cancerous colonic epithelial tells. Planta Medica, 65,
527–531.
a
glucuronanlyase. Carbohydrate
green algae employing a simple methodology. The ulvan obtained
is a high molecular weight and highly sulfated polysaccharide, rich
in rhamnose and glucuronic acid (ulvanobiuronic acid A), with
minor amounts of iduronic acid, and xylose (ulvanobiuronic acid
B). Considering the overall results, the final assessment of ulvan
percentage in the sample III was 88%.
Acknowledgments
Kamerling, J. P., & Gerwig, G. J. (2007). Strategies for the structural analysis of carbo-
hydrates. In P. K. Johannis (Ed.), Comprehensive glycoscience (pp. 1–68). Oxford:
Elsevier.
Lahaye, M. (1991). Marine algae as sources of fibres: Determination of soluble and
insoluble dietary fibre contents in some sea vegetables. Journal of the Science of
Food and Agriculture, 54, 587–594.
Lahaye, M. (1998). NMR spectroscopic characterisation of oligosaccharides from two
Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohy-
drate Research, 314, 1–12.
This work was supported by the project IBEROMARE (‘Cen-
tro Multipolar de Valorizac¸ ão de Recursos e ResíduosMarinhos’),
approved by Operational Programme for Cross-border Coop-
eration: Spain – Portugal, 2007–2013 (POCTEP), with funding
contribution through the European Regional Development Fund
(ERDF co-funding) and POCTEP.
Lahaye, M., Alvarez-Cabal Cimadevilla, E., Kuhlenkamp, R., Quemener, B., Lognoné,
V., & Dion, P. (1999). Chemical composition and 13C NMR spectroscopic char-
acterisation of ulvans from Ulva (Ulvales, Chlorophyta). Journal of Applied
Phycology, 11, 1–7.
Anabela Alves is grateful for financial support from
Fundac¸ ãopara
a
Ciência
e
Tecnologia (FCT) through the
SFRH/BD/39359/2007 grant.
Lahaye, M., Brunel, M., & Bonnin, E. (1997). Fine chemical structure analysis of
oligosaccharides produced by an ulvan-lyase degradation of the water-soluble
cell-wall polysaccharides from Ulva sp. (Ulvales, Chlorophyta). Carbohydrate
Research, 304, 325–333.
Lahaye, M., Inizan, F., & Vigouroux, J. (1998). NMR analysis of the chemical struc-
ture of ulvan and of ulvan–boron complex formation. Carbohydrate Polymers, 36,
239–249.
Lahaye, M., & Jegou, D. (1993). Chemical and physical–chemical characteristics of
dietary fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev.
Journal of Applied Phycology, 5, 195–200.
Lahaye, M., Jegou, D., & Buleon, A. (1994). Chemical characteristics of insoluble
glucans from the cell wall of the marine green alga Ulva lactuca (L.) Thuret.
Carbohydrate Research, 262, 115–125.
The authors thank Novozymes for kindly providing the enzy-
matic mixture. Authors are also grateful to Dra. Mariana Andrade
and Materials Center of the University of Porto (CEMUP) for the
acquisition of 13C NMR spectra (NMR spectrometer is part of
the National NMR Network and was purchased in the frame-
work of the National Program for Scientific Re-equipment, contract
REDE/1517/RMN/2005, with funds from POCI 2010 (FEDER) and
FCT).
References
Lahaye, M., & Ray, B. (1996). Cell-wall polysaccharides from the marine green alga
Ulva rigida (Ulvales, Chlorophyta) – NMR analysis of ulvan oligosaccharides.
Carbohydrate Research, 283, 161–173.
Alves, A., Caridade, S. G., Mano, J. F., Sousa, R. A., & Reis, R. L. (2010). Extraction and
physico-chemical characterization of a versatile biodegradable polysaccharide
obtained from green algae. Carbohydrate Research, 345, 2194–2200.
Bertaud, F., Sundberg, A., & Holmbom, B. (2002). Evaluation of acid methanoly-
sis for analysis of wood hemicelluloses and pectins. Carbohydrate Polymers, 48,
319–324.
Biermann, C. J. (1988). Hydrolysis and other cleavages of glycosidic linkages in
polysaccharides. In R. S. Tipson, & H. Derek (Eds.), Advances in carbohydrate
chemistry and biochemistry (pp. 251–271). San Diego, CA: Academic Press.
Bleton, J., Mejanelle, P., Sansoulet, J., Goursaud, S., & Tchapla, A. (1996). Char-
acterization of neutral sugars and uronic acids after methanolysis and
trimethylsilylation for recognition of plant gums. Journal of Chromatography A,
720, 27–49.
Cannell, R. J. P., Dufresne, C., Florence, A. J., Gailliot, F. P., Gibbons, S., Gray, A. I.,
et al. (1998). Natural products isolation. In R. J. P. Cannell (Ed.), Methods in
biotechnology (pp. 343–408). Totowa, NJ: Humana Press.
Castro, R., Piazzon, M. C., Zarra, I., Leiro, J., Noya, M., & Lamas, J. (2006). Stimulation
of turbot phagocytes by Ulva rigida C. Agardh polysaccharides. Aquaculture, 254,
9–20.
Lahaye, M., Ray, B., Baumberger, S., Quemener, B., & Axelos, M. A. V. (1996). Chemical
characterisation and gelling properties of cell wall polysaccharides from species
of Ulva (Ulvales, Chlorophyta). Hydrobiologia, 326–327, 473–480.
Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysac-
charide from green seaweeds. Biomacromolecules, 8, 1765–1774.
Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., et al.
(2007). Natural origin biodegradable systems in tissue engineering and regen-
erative medicine: Present status and some moving trends. Journal of the Royal
Society Interface, 4, 999–1030.
Mao, W., Zang, X., Li, Y., & Zhang, H. (2006). Sulfated polysaccharides from marine
green algae Ulva conglobata and their anticoagulant activity. Journal of Applied
Phycology, 18, 9–14.
McKinnell, J. P., & Percival, E. (1962). Structural investigations on the water-soluble
polysaccharide of the green seaweed Enteromorpha compressa. Journal of the
Chemical Society (Resumed), 3141–3148.
Pengzhan, Y., Ning, L., Xiguang, L., Gefei, Z., Quanbin, Z., & Pengcheng, L. (2003). Anti-
hyperlipidemic effects of different molecular weight sulfated polysaccharides
from Ulva pertusa (Chlorophyta). Pharmacological Research, 48, 543–549.
Pengzhan, Y., Quanbin, Z., Ning, L., Zuhong, X., Yanmei, W., & Zhi’en, L. (2003).
Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on
their antihyperlipidemia activity. Journal of Applied Phycology, 15, 21–27.
Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., et al. (2005). Antioxidant activity
of different sulfate content derivatives of polysaccharide extracted from Ulva
pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules,
37, 195–199.
Qi, H., Zhao, T., Zhang, Q., Li, Z., Zhao, Z., & Xing, R. (2005). Antioxidant activity of
different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm
(Chlorophyta). Journal of Applied Phycology, 17, 527–534.
Quemener, B., & Lahaye, M. (1998). Comparative analysis of sulfated galactans from
red algae by reductive hydrolysis and mild methanolysis coupled to two differ-
ent HPLC techniques. Journal of Applied Phycology, 10, 75–81.
Quemener, B., Lahaye, M., & Bobin-Dubigeon, C. (1997). Sugar determination in
ulvans by a chemical-enzymatic method coupled to high performance anion
exchange chromatography. Journal of Applied Phycology, 9, 179–188.
Quemener, B., Lahaye, M., & Metro, F. (1998). Assessment of methanolysis for the
determination of composite sugars of gelling carrageenans and agarose by HPLC.
Carbohydrate Research, 266, 53–64.
Rabemanolontsoa, H., Ayada, S., & Saka, S. (2011). Evaluation of different methods
to determine monosaccharides in biomass. In T. Yao (Ed.), Zero-carbon energy
Kyoto 2010 (pp. 123–128). Tokyo: Springer.
Ray, B., & Lahaye, M. (1995). Cell-wall polysaccharides from the marine green alga
Ulva ‘rigida’ (Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohydrate
Research, 274, 313–318.
Robic, A., Gaillard, C., Sassi, J. F., Lerat, Y., & Lahaye, M. (2009). Ultrastructure of ulvan:
A polysaccharide from green seaweeds. Biopolymers, 91, 652–664.
Castro, R., Zarra, I., & Lamas, J. (2004). Water-soluble seaweed extracts mod-
ulate the respiratory burst activity of turbot phagocytes. Aquaculture, 229,
67–78.
Chambers, R. E., & Clamp, J. R. (1971). An assessment of methanolysis and other
factors used in the analysis of carbohydrate-containing materials. Biochemical
Journal, 125, 1009–1018.
Choy, Y.-M., & Dutton, G. G. S. (1973). Structure of the capsular polysaccharide of
Klebsiella K-type 56. Canadian Journal of Chemistry, 51, 3021–3026.
Cluzet, S., Torregrosa, C., Jacquet, C., Lafitte, C., Fournier, J., Mercier, L., et al. (2004).
Gene expression profiling and protection of Medicago truncatula against a fun-
gal infection in response to an elicitor from green algae Ulva spp. Plant, Cell &
Environment, 27, 917–928.
Conrad, H. E. (1980). The acid lability of the glycosidic bonds of l-iduronic acid
residues in glycosaminoglycan. Biochemical Journal, 191, 355–363.
Dahlman, O., Jacobs, A., Liljenberg, A., & Olsson, A. I. (2000). Analysis of carbohydrates
in wood and pulps employing enzymatic hydrolysis and subsequent capillary
zone electrophoresis. Journal of Chromatography A, 891, 157–174.
De Ruiter, G. A., Schols, H. A., Voragen, A. G. J., & Rombouts, F. M. (1992). Carbohydrate
analysis of water-soluble uronic acid-containing polysaccharides with high-
performance anion-exchange chromatography using methanolysis combined
with TFA hydrolysis is superior to four other methods. Analytical Biochemistry,
207, 176–185.
Doco, T., O’Neill, M. A., & Pellerin, P. (2001). Determination of the neutral and acidic
glycosyl-residue compositions of plant polysaccharides by GC–EI-MS analysis
of the trimethylsilyl methyl glycoside derivatives. Carbohydrate Polymers, 46,
249–259.
Elboutachfaiti, R., Delattre, C., Petit, E., El Gadda, M., Courtois, B., Michaud, P., et al.
(2009). Improved isolation of glucuronan from algae and the production of