5408 J. Am. Chem. Soc., Vol. 123, No. 23, 2001
White et al.
Scheme 1
of this structure to that of paclitaxel. The solid-state structure
of 2 revealed by X-ray crystallographic1b analysis shows that
the carbon atoms attached to C9 and C10 are antiperiplanar,
resulting in an almost perfect zigzag alignment of the C7-C12
segment. Structural studies of epothilone A (1) using NMR
techniques suggest that the major conformer in solution is similar
to that of 2 in the crystal, although the C6-C11 segment of the
perimeter shows flexibility, and ca. 20% of a minor conformer
can be seen.8 One current view of the pharmacophoric relation-
ship between paclitaxel (7) and the epothilones overlays C6-
C9 of 7, where a trans antiperiplanar orientation is enforced by
the fusion of the B and C rings, with C11-C8 of 2.9
Incorporation of a cis double bond at C9-C10 of 4 would
rigidify this segment of the macrolide perimeter and would
remove its conformational homology with 7 by enforcing a syn
coplanar arrangement of the four carbons C8-C11. It might
therefore be expected that the conformational change induced
by a cis 9,10 double bond would impact the biological activity
of 4. By contrast, a trans double bond at C9-C10 of 4 would
constrain the C8-C11 domain of the macrolide perimeter to
an antiperiplanar orientation, thereby restoring conformational
homology with paclitaxel.10
Two approaches were projected for installing a cis-olefin at
C9-C10 of 4 and, hence, 2. The first envisioned a Wittig
olefination which would connect phosphorane 8 with aldehyde
9, while the second option postulated alkylation of the anion
from terminal alkyne 11 with allylic bromide 10. The latter route
would generate a seco acid 12 which could be semi-
hydrogenated to obtain the substance produced from 8 and 9.
Alternatively, the alkyne 11 could be used to produce a trans-
vinylstannane, and Stille coupling with 10 would then lead to
a trans-9,10-dehydroepothilone in which the antiperiplanar
orientation of atoms around C9-10 was fixed and immutable.
The versatility offered by these approaches to epothilone
synthesis appeared inviting, especially since 8 and 11 could in
principle be acquired from 10 and 9, respectively, through
straightforward transformations. Efforts therefore began toward
synthesis of the coupling partners in the set 8-11.
functionality in a domain of the macrolide, which has not been
extensively explored from the viewpoint of analogue synthesis,
but would also offer an opportunity to constrain a region of the
perimeter thought to be somewhat flexible.7 The latter point
impinges upon an important issue relevant to the three-
dimensional structure of the epothilones, and to the relationship
Results and Discussion
(6) Total synthesis of epothilone B: (a) Su, D.-S.; Meng, D.; Bertinato,
P.; Balog, A.; Sorensen, E. J.; Danishefsky, S. J.; Zheng, Y.-H.; Chou, T.-
C.; He, L.; Horwitz, S. B. Angew. Chem. 1997, 109, 775; Angew. Chem.,
Int. Ed. Engl. 1997, 36, 757. (b) Meng, D.; Bertinato, P.; Balog, A.; Su,
D.-S.; Komenecka, T.; Sorensen, E. J.; Danishefsky, S. J. J. Am. Chem.
Soc. 1997, 119, 10073. (c) Nicolaou, K. C.; Winssinger, N.; Pastor, J. A.;
Ninkovic, S.; Sarabia, F.; He, Y.; Vourloumis, D.; Yang, Z.; Li, T.;
Giannakakou, P.; Hamel, E. Nature 1997, 387, 268. (d) Nicolaou, K. C.;
Ninkovic, S.; Sarabia, F.; Vourloumis, D.; He, Y.; Vallberg, H.; Finlay,
M. R. V.; Yang, Z. J. Am. Chem. Soc. 1997, 119, 7974. (e) Balog, A.;
Harris, C.; Savin, K.; Zhang, X.-G.; Chou, T.-C.; Danishefsky, S. J. Angew.
Chem. 1998, 110, 2821; Angew. Chem., Int. Ed. 1998, 37, 2675. (f) Schinzer,
D.; Bauer, A.; Schieber, J. Synlett 1998, 861. (g) May, S. A.; Grieco, P.
Chem. Commun. 1998, 1597. (h) Mulzer, J.; Mantoulidis, A.; O¨ hler, E.
Tetrahedron Lett. 1998, 39, 8633. (i) White, J. D.; Carter, R. G.;
Sundermann, K. F. J. Org. Chem. 1999, 64, 684. (j) White, J. D.;
Sundermann, K. S.; Carter, R. G. Org. Lett. 1999, 1, 1431. (k) Nicolaou,
K. C.; Hepworth, D.; Finley, M. R. V.; King, N. P.; Werschkun, B.; Bigot,
A. Chem. Commun. 1999, 519. (l) Schinzer, D.; Bauer, A.; Schieber, J.
Chem. Eur. J. 1999, 5, 2492. (m) Harris, C. R.; Kuduk, S. D.; Savin, K.;
Balog, A.; Danishefsky, S. J. Tetrahedron Lett. 1999, 40, 2263. (n) Harris,
C. R.; Kuduk, S. D.; Balog, A.; Savin, K.; Danishefsky, S. J. J. Am. Chem.
Soc. 1999, 121, 7050. (o) Martin, H. J.; Drescher, M.; Mulzer, J. Angew.
Chem., Int. Ed. 2000, 39, 581. (p) Sawada, D.; Kanai, M.; Shibasaki, M. J.
Am. Chem. Soc. 2000, 122, 10521. (q) Mulzer, J.; Mantoulidis, A.; O¨ hler,
E. J. Org. Chem. 2000, 65, 7456. (r) For a recent review of synthetic efforts
directed towards epothilones, see: Mulzer, J. Chem. Mon. 2000, 131, 205.
(7) For other modifcations to this region of the epothilone perimeter,
see: (a)Winkler, J. D.; Holland, J. M.; Kasparec, J.; Axelsen, P. H.
Tetrahedron 1999, 55, 8199. (b) Taylor, R. E.; Galvin, G. M.; Hilfiker, K.
A.; Chen, Y. 217th ACS National Meeting, Anaheim, CA, March 21-25,
1999.
Synthesis of Subunits A and B. Since early installation of
the Z trisubstituted C12-C13 double bond of 4 was judged to
be of pivotal importance, our route began with construction of
this moiety in a form which would permit extension from each
terminus in succession toward subunit A. Carbocupration of
propargyl alcohol has been shown to proceed with clean regio-
and stereoselectivity to give iodo alcohol 13,11 and although
the yield of this conversion is low, the minimal cost of reagents
makes this an acceptable process for constructing a function-
alized trisubstituted alkene suitable for our purpose. After
protection of 13 as its THP ether 14, the latter was subjected to
halogen-metal exchange with tert-butyllithium. Transmetalation
with cuprous cyanide then gave an alkenylcopper species which
underwent conjugate addition to (S)-3-acryloyl-4-benzyloxazo-
(8) Taylor R. E.; Zajicek, J. J. Org. Chem. 1999, 64, 7224.
(9) Giannakakou, P.; Gussio, R.; Nogales, E.; Downing, K. H.; Zaha-
revitz, D.; Bollbuck, B.; Poy, G.; Sackett, D.; Nicolaou, K. C.; Fojo, T.
Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2904.
(10) For a different view of the pharmacophoric relationship between
epothilones and Taxol, see: (a) Ojima, I.; Chakravarty, S.; Inoue, T.; Lin,
S.; He, L.; Horwitz, S. B.; Kuduk, S. D.; Danishefsky, S. J. Proc. Natl.
Acad. Sci. U.S.A. 1999, 96, 4256. (b) Wang, M.; Xia, X.; Kim, Y.; Hwang,
D.; Jansen, J. M.; Botta, M.; Liotta, D. C.; Snyder, J. P. Org. Lett. 1999, 1,
43.
(11) Duboudin, J. G.; Jousseaume, B.; Bonakdar, A. J. Organomet. Chem.
1979, 168, 227.