R. Dapueto et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7102–7106
7105
Table 3
tribution studies showed that both complexes behave similar and
have almost identical tumor to muscle and tumor to blood ratios
meaning that deoxyglucose have the same distribution in vivo than
glucose. The results presented here justify further investigations in
animals and humans of these complexes as potential melanoma
imaging agents.
Biodistribution pattern of 99mTc-glucose complexes [99mTc]9 and [99mTc]10 in B16F1
melanoma-bearing C57BL/6 mice, n = 3, at 60 min post-injection
% ID/g
60 min Post-injection
Organ
[
99mTc]9
[
99mTc]10
Blood
Liver
Heart
Lung
Spleen
Kidney
Thyroid
Muscle
Bone
1.6 1.3
3.9 0.99
0.31 0.14
0.67 0.49
0.27 0.11
2.3 0.95
0.39 0.14
0.12 0.02
0.17 0.04
2.3 0.28
8.7 1.3
0.38 0.06
1.5 0.57
0.38 0.22
3.5 0.71
0.41 0.16
0.29 0.08
0.46 0.30
0.15 0.02
0.40 0.28
Acknowledgments
This work was supported by CHLCC-Uruguay and CSIC-UdelaR.
We thank CHLCC-Uruguay and CSIC-UdelaR for scholarship to R.D.
References and notes
Brain
Tumor
0.046 0.006
0.31 0.23
1. Calvo, M.; Figueroa, A.; Grande, E.; García Campelo, R.; Aparicio, L. A. Int. J.
Endocrinol. 2010, 1.
2. Wahl, L. J. Nucl. Med. 1996, 37, 1038.
% of injected dose (% ID)
9. Abram, U.; Alberto, R. J. Braz. Chem. Soc. 2006, 17, 1486.
10. Schibli1, R.; Schubiger, P. A. Eur. J. Nucl. Med. 2002, 29, 1529.
11. Branco de Barros, L. A.; Cardoso, V. N.; das Graças Mota, L.; Amaral Leite, E.; de
Oliveira, M. C.; Alves, R. J. Bioorg. Med. Chem. Lett. 2010, 20, 2478.
12. Chen, X.; Li, L.; Liu, F.; Liu, B. Bioorg. Med. Chem. Lett. 2006, 16, 5503.
13. Yang, D. J.; Kim, C. G.; Schechter, N. R.; Azhdarinia, A.; Yu, D. F.; Oh, C. S.;
Bryant, J. L.; Won, J. J.; Kim, E. E.; Podoloff, D. A. Radiology 2003, 226, 465.
14. Gambini, J. P.; Cabral, P.; Alonso, O.; Savio, E.; Figueroa, S. D.; Zhang, X.; Ma, L.;
Deutscher, S. L.; Quinnd, T. P. Nucl. Med. Biol. 2011, 38, 255.
15. Zbytek, B.; Carlson, J. A.; Granese, J.; Ross, J.; Mihm, M. C.; Slominski, A. Expert
Rev. Dermatol. 2008, 3, 569.
Intestine
Urine and bladder
19 4.1
65 7.6
46 6.2
16 2.1
Table 4
Tumor/blood and tumor/muscle ratios for 99mTc-glucose complexes ([99mTc]9 and
99mTc]10) at 60 min post-injection
[
16. Oliveria, S. A.; Saraiya, M.; Geller, A. C.; Heneghan, M. K.; Jorgensen, C. Arch. Dis.
Child. 2006, 91, 131.
Tumor/blood
Tumor/muscle
17. Ho Shona, I. A.; Chungc, D. K. V.; Sawd, R. P. M. Nucl. Med. Commun. 2008, 29,
847.
18. Belhocine, T. Z.; Scott, A. M.; Even-Sapir, E.; Urbain, J. L.; Essner, R. J. Nucl. Med.
2006, 47, 957.
[
[
99mTc]9
0.21 0.05
0.24 0.02
2.5 0.3
2.0 0.7
99mTc]10
19. Camacho, X.; García, M. F.; Balter, H.; Fernández, M.; Porcal, W.; Gambini, J. P.;
Alonso, O.; Cabral, P. Nucl. Med. Biol. 2010, 37, 697.
20. Miao, Y.; Whitener, D.; Feng, W.; Owen, N. K.; Chen, J.; Quinn, T. P. Bioconjugate
Chem. 2003, 14, 1177.
21. Garg, S.; Kothari, K.; Thopate, S. R.; Doke, A. K.; Garg, P. K. Bioconjugate Chem.
2009, 20, 583.
22. Yamada, K.; Brink, I.; Bissé, E.; Epting, T.; Engelhardt, R. J. Dermatol. 2005, 32,
316.
[
[
99m Tc] 9
99m Tc] 10
100000
80000
60000
40000
20000
0
23. Zhang, J.; Zhang, S.; Guo, H.; Wang, X. Bioorg. Med. Chem. Lett. 2010, 20, 3781.
24. Petrig, J.; Schibli, R.; Dumas, C.; Alberto, R.; Schubiger, P. A. Chem. Eur. J. 2001, 7,
1868.
25. Lindsley, C. W.; Zhao, Z.; Newton, R. C.; Leister, W. H.; Strauss, K. A. Tetrahedron
Lett. 2002, 43, 4467.
26. General procedure for preparation of esters 7 and 8: Azide 5 or 6 (1 equiv) was
dissolved in dry CH2Cl2 (24 mL/mmol) and triphenylphosphine polymer-bound
(Sigma, 2 equiv, 3 mmol/g) was added. After the mixture had been shaked for
24 h at room temperature, water (0.38 mL/mmol) was added and then was
shaked for a further 6 h. The mixture was filtered, washed with CH2Cl2 and the
solvent was evaporated in vacuo to obtain the corresponding amines, that were
sufficiently pure by TLC analysis for further synthesis. Immediately,
triethylamine (2.2 equiv) and ethyl bromoacetate (2.2 equiv) were added to a
solution of the corresponding amines in dry THF (17 mL/mmol). The solution
was refluxed for 5 h and then was stirred overnight at room temperature under
15
30
60
90
N2 atmosphere. The mixture was filtered, diluted with CH2Cl2 and washed with
90 (D-Glucose)
water. The organic phases were dried over Na2SO4 and the solvent was
evaporated in vacuo. The crude was subjected to column cromatography (SiO2,
mixtures of Hexane/Ethyl acetate 3:7) to afford 7 and 8. (7): 23%, yellowish oil,
1H-RMN (CDCl3): d = 5.21 (t, J = 9.2 Hz, 1H; H-3), 5.09 (t, J = 9.6 Hz, 1H; H-4),
5.00 (t, J = 8.0 Hz, 1H; H-2), 4.63 (d, J = 8.0 Hz, 1H; H-1), 4.29 (dd, J = 4.8 Hz,
J0 = 4.0 Hz, 1H; H-6a), 4.18 (c, J = 7.2 Hz, 4H; OCH2CH3), 4.12 (m, 1H; H-6b), 3.99
(m, 1H; OCH2CH2N), 3.71 (m, 2H; H-5 OCH2CH2N), 3.57 (s, 4H; NCH2C@O), 3.04
(m, 2H; OCH2CH2N), 2.08, 2.04, 2.02, 1.99 (s, 12H; CH3C@O), 1.28 (t, J = 7.2 Hz,
6H; OCH2CH3). 13C-RMN (CDCl3): d = 7.5 (OCH2CH3), 53.5 (OCH2CH2N), 55.2 (C-
5), 56.3 (NCH2C@O), 61.6 (OCH2CH3), 62.5 (C-6), 68 (C-4), 69.2 (OCH2CH2N),
71.7 (C-2), 73.1 (C-3), 101.5 (C-1), 170.3 ((C@O)Me), 171.6 ((C@O)Et). (8): 37%,
yellowish oil, 1H-RMN (CDCl3): d = 5.32 (m, 1H; H-3), 5.04 (m, 2H; H-1 H-4),
4.36 (dd, J = 4.4 Hz J0 = 4.4 Hz, 1H; H-6a), 4.22 (c, J = 6.8 Hz, 4H; OCH2CH3), 4.07
(d, J = 2.0 Hz, 1H; H-6b), 4.04 (m, 1H; H-5), 3.80 (m, 1H; OCH2CH2N), 3.63 (s,
4H; NCH2C@O), 3.61 (m, 1H; OCH2CH2N), 3.05 (m, 2H; OCH2CH2N), 2.26 (dd,
J = 0.8 Hz J0 = 1.2 Hz, 010 H; H-2 ec.), 2.11, 2.06, 2.02 (s, 9H; CH3C@O), 1.87 (ddd,
Time (min)
Figure 2. Tumor-cell uptake assay of 99mTc-glucose complexes ([99mTc]9 and
99mTc]10) by B16F1 cells at 37 °C during 15, 30, 60 and 90 min. Blocking
experiment was performed by incubation with -glucose for 90 min. Total
radioactivity is presented as count per minute (CPM).
[
D
structure and function. Other chelating systems as MAG3 or
MAMA, are also suitable options for radiolabeling glucose with
technetium-99m as describe by Chen et al.13 Those complexes pre-
sented similar biodistribution patterns, tumor uptake and partition
coefficients than the complexes described in this Letter. [99mTc]9
and [99mTc]10 complexes were evaluated for its cell internaliza-
tion and biodistribution in C57BL/6 mice bearing B16F1 murine
melanoma model. The high in vitro uptake of [99mTc]10 which
was not dependent of glucose, supporting the idea that different
affinity glucose transporters isoforms or passive transport may
contribute to glucose transport across the cell membrane. Biodis-
´
J = 3.6 Hz J = 7.8 Hz J = 3.6 Hz, 1H; H-2ax), 1.31 (t, J = 6.8 Hz, 6H; OCH2CH3).
13C-RMN (CDCl3): d = 14.1 (OCH2CH3), 35.5 (C-2), 54.5 (OCH2CH2N), 56.7
(NCH2C@O), 60.3 (OCH2CH3), 62.5 (C-6), 67.2 (C-5), 67.7 (OCH2CH2N), 69.7 (C-
4), 98.0 (C-1), 170.1 ((C@O)Me), 171.5 ((C@O)Et).
27. Na½99mTcO4ꢀꢁ (1 mL, 200 MBq) from 99mTc/99Mo generator was added to
Isolink™ kit. The solution was incubated in water bath at 100 °C for 20 min
and then was neutralized with 1 mL of 0.1 N HCl solution. Label was controlled
by HPLC as described in this Letter.