Published on Web 10/22/2004
Direct Chemical Synthesis of the â-Mannans: Linear and
Block Syntheses of the Alternating â-(1f3)-â-(1f4)-Mannan
Common to Rhodotorula glutinis, Rhodotorula mucilaginosa,
and Leptospira biflexa
David Crich,* Wenju Li, and Hongmei Li
Contribution from the Department of Chemistry, UniVersity of Illinois, 845 West Taylor Street,
Chicago, Illinois 60607-7061
Received May 13, 2004; E-mail: dcrich@uic.edu
Abstract: Two stereocontrolled syntheses of a methyl glycoside of an alternating â-(1f4)-â-(1f3)-
mannohexaose, representative of the mannan from Rhodotorula glutinis, Rhodotorula mucilaginosa, and
Leptospira biflexa, are described. Both syntheses employ a combination of 4,6-O-benzylidene- and 4,6-
O-p-methoxybenzylidene acetal-protected donors to achieve stereocontrolled formation of the â-mannoside
linkage. The first synthesis is a linear one and proceeds with a high degree of stereocontrol throughout
and an overall yield of 1.9%. The second synthesis, a block synthesis, makes use of the coupling of two
trisaccharides, resulting in a shorter sequence and an overall yield of 4.4%, despite the poor selectivity in
the key step.
Introduction
4,6-O-benzylidene-type protection and nonparticipating groups
on O-2 and O-3 in our mannosylation protocols.3,4 We first
Recently, we described the linear synthesis of two â-man-
nans,1 a â-(1f2)-mannooctaose and a â-(1f4)-mannohexaose,
employing the 4,6-O-benzylidene-directed2 â-mannosylations
developed in our laboratory from either thioglycoside3 or
glycosyl sulfoxide4 donors, with emphasis on the influence of
the linkage type, â-(1f2) or â-(1f4), on stereoselectivity in
the growing chain. We describe here the extension of these
investigations to the synthesis of an alternating â-(1f3)-â-
(1f4)-mannohexaose. This hexasaccharide may be viewed as
essentially two repeats, sandwiched between two terminal
glycosides, of the basic structural unit of the antigenic mannan,
with alternating â-(1f3) and â-(1f4) linkages from Rhodot-
orula glutinis,5 Rhodotorula mucilaginosa,6 and Leptospira
biflexa.7 The particular challenge of this target, aside from the
obvious presence of multiple â-mannosidic linkages,8 is the
alternating nature of the chain, necessitating the use of two
glycosyl donors with orthogonal protection at positions 3 and
4, which are nevertheless consistent with the requirement for a
describe in full a linear synthesis in which the challenge is met
by the judicious combination of benzyl and p-methoxybenzyl
ethers with benzylidene and p-methoxybenzylidene acetals,
respectively, in two distinct thioglycosides,9 and then in a quest
for greater efficiency,10 we present a convergent or block
synthesis11 which eliminates the need for one of these protecting
groups, namely, the p-methoxybenzyl ether.
Results and Discussion
The linear synthesis of the hexasaccharide began with the
preparation of two thioglycosides and their sulfoxides. Thus,
phenyl R-D-thiomannopyranoside 1 was converted to ben-
zylidene acetal 212 and the corresponding p-methoxybenzylidene
acetal 313 in the standard manner. Reaction of 2 with dibutyltin
oxide14 and then p-methoxybenzyl chloride and tetrabutylam-
monium bromide selectively afforded 3-O-PMB ether 415 in 94%
yield. Reaction with sodium hydride and benzyl bromide then
(9) For a preliminary communication covering the linear synthesis, see: Crich,
D.; Li, H.; Yao, Q.; Wink, D. J.; Sommer, R. D.; Rheingold, A. L. J. Am.
Chem. Soc. 2001, 123, 5826-5828.
(10) (a) Douglas, N. L.; Ley, S. V.; Lucking, U.; Warriner, S. L. J. Chem. Soc.,
Perkin Trans. 1 1998, 51-65. (b) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.;
Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121,
734-753.
(1) Crich, D.; Banerjee, A.; Yao, Q. J. Am. Chem. Soc. 2004, in press.
(2) Crich, D.; Sun, S. J. Am. Chem. Soc. 1997, 119, 11217-11223.
(3) (a) Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015-9020. (b)
Crich, D.; Smith, M. J. Am. Chem. Soc. 2002, 124, 8867-8869.
(4) (a) Crich, D.; Sun, S. J. Org. Chem. 1997, 62, 1198-1199. (b) Crich, D.;
Sun, S. Tetrahedron 1998, 54, 8321-8348.
(5) (a) Gorin, P. A. J.; Horitsu, K.; Spencer, J. F. T. Can. J. Chem. 1965, 43,
950-954. (b) Gorin, P. A. J. Carbohydr. Res. 1975, 39, 3-10.
(6) Takita, J.; Katohda, S.; Sugiyama, H. Carbohydr. Res. 2001, 335, 133-139.
(7) Matsuo, K.; Isogai, E.; Araki, Y. Carbohydr. Res. 2000, 328, 517-524.
(8) (a) Pozsgay, V. In Carbohydrates in Chemistry and Biology; Ernst, B.,
Hart, G. W., Sinay¨, P., Eds.; Wiley-VCH: Weinheim, Germany, 2000;
Vol. 1, pp 319-343. (b) Demchenko, A. V. Synlett 2003, 1225-1240. (c)
Demchenko, A. V. Curr. Org. Chem. 2003, 7, 35-79. (d) Barresi, F.;
Hindsgaul, O. In Modern Methods in Carbohydrate Synthesis; Khan, S.
H., O’Neill, R. A., Eds.; Harwood Academic Publishers: Amsterdam, 1996;
pp 251-276. (e) Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin
Trans. 1 2000, 1471-1491.
(11) (a) Boons, G.-J. Tetrahedron 1996, 52, 1095-1121. (b) Kanie, O. In
Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G. W., Sinay¨,
P., Eds.; Wiley-VCH: Weinheim, Germany, 2000; Vol. 1, pp 407-426.
(12) Oshitari, T.; Shibasaki, M.; Yoshizawa, T.; Tomita, M.; Takao, K.;
Kobayashi, S. Tetrahedron 1997, 53, 10993-11006.
(13) Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371-
2374.
(14) (a) David, S.; Hanessian, S. Tetrahedron 1985, 41, 643-663. (b) David,
S. In PreparatiVe Carbohydrate Chemistry; Hanessian, S., Ed.; Dekker:
New York, 1997; pp 69-83.
(15) Nicolaou, K. C.; Mitchell, H. J.; Suzuki, H.; Rodriguez, R. M.; Baudoin,
O.; Fylaktakidou, K. C. Angew. Chem., Int. Ed. 1999, 38, 3334-3339.
9
10.1021/ja0471931 CCC: $27.50 © 2004 American Chemical Society
J. AM. CHEM. SOC. 2004, 126, 15081-15086
15081