J . Org. Chem. 2001, 66, 4619-4624
4619
Kin etic Resolu tion of Acyclic Secon d a r y Allylic Silyl Eth er s
Ca ta lyzed by Ch ir a l Keton es
Dan Yang,* Guan-Sheng J iao, Yiu-Chung Yip, Tsz-Hin Lai, and Man-Kin Wong
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
yangdan@hku.hk
Received J anuary 22, 2001
Kinetic resolution of acyclic secondary allylic silyl ethers by chiral dioxiranes generated in situ
from chiral ketones (R)-1 and (R)-2 and Oxone was investigated. An efficient and catalytic method
has been developed for kinetic resolution of those substrates with a CCl3, tert-butyl, or CF3 group
at the R-position. In particular, high selectivities (S up to 100) were observed for kinetic resolutions
of racemic R-trichloromethyl allylic silyl ethers 7 and 9-15 catalyzed by ketones (R)-2. Both the
recovered substrates and the resulting epoxides were obtained in high enantiomeric excess. On
the basis of steric and electrostatic interactions between the chiral dioxiranes and the racemic
substrates, a model was proposed to rationalize the enantioselectivities and diastereoselectivities
in the chiral ketone-catalyzed kinetic resolution process.
In tr od u ction
attention was drawn to the resolution of R-trichlorom-
ethyl allylic alcohols and their derivatives for two rea-
sons. First, this particular class of chiral allylic alcohols
not only are important intermediates in the synthesis of
natural products of agricultural importance, e.g., sodium
cilastatin,6a NRDC 182,6b,c permethrin,6b decamethrin,6b
and cypermethrin,6c but also can be easily transformed
to other useful products such as allylic thiols,7a,b terminal
vinyl epoxides,7c R-fluoro acids,7d hydroxy acids,7e,f and
amino acids.7e,f Second, a number of methods have been
developed to conveniently prepare racemic R-trichloro-
methyl allylic alcohols, e.g., via nucleophilic addition to
R,â-unsaturated aldehydes by trichloromethide, which
can be generated from a 1:1 mixture of trichloroacetic
acid and sodium trichloroacetate in dimethylformamide,8a
cathodic reduction of carbon tetrachloride,8b or decom-
position of trichloroacetic acid in hexamethylphosphoric
triamide.8c However, preparation of enantiomerically
Both chiral secondary allylic alcohols1 and the corre-
sponding chiral epoxy alcohols1b are versatile building
blocks for asymmetric synthesis of biologically active
natural products. Kinetic resolution2-4 of readily avail-
able racemic secondary allylic alcohols or their deriva-
tives via an enantioselective epoxidation method, e.g.,
Sharpless asymmetric epoxidation method,4a,b offers a
feasible and efficient access to both kinds of chiral
intermediates. In recent years, chiral ketones have been
found to be efficient catalysts for asymmetric epoxidation
of trans-olefins and trisubstituted olefins.5 Thus, chiral
dioxiranes are expected to be sensitive to the preexisting
chirality in secondary allylic alcohols or their derivatives,
which is essential to the kinetic resolution. Herein we
report our results on chiral ketone-catalyzed kinetic
resolution of acyclic secondary allylic silyl ethers.
Resu lts a n d Discu ssion s
(5) For selected examples of asymmetric epoxidation mediated by
chiral ketones, see: (a) Curci, R.; D′Accolti, L.; Fiorentino, M.; Rosa,
A. Tetrahedron Lett. 1995, 36, 5831. (b) Yang, D.; Yip, Y.-C.; Tang,
M.-W.; Wong, M.-K.; Zheng, J .-H.; Cheung, K.-K. J . Am. Chem. Soc.
1996, 118, 491. (c) Yang, D.; Wang, X.-C.; Wong, M.-K.; Yip, Y.-C.;
Tang, M.-W. J . Am. Chem. Soc. 1996, 118, 11311. (d) Yang, D.; Wong,
M.-K.; Yip, Y.-C.; Wang, X.-C.; Tang, M.-W.; Zheng, J .-H.; Cheung, K.-
K. J . Am. Chem. Soc. 1998, 120, 5943. (e) Tu, Y.; Wang, Z.-X.; Shi, Y.
J . Am. Chem. Soc. 1996, 118, 9806. (f) Wang, Z.-X.; Tu, Y.; Frohn, M.;
Zhang, J .-R.; Shi, Y. J . Am. Chem. Soc. 1997, 119, 11224. (g) Tian, H.;
She, X.; Shu, L.; Yu, H.; Shi, Y. J . Am. Chem. Soc. 2000, 122, 11551.
(h) Adam, W.; Zhao, C.-G. Tetrahedron: Asymmetry 1997, 8, 3995. (i)
Denmark, S, E.; Wu, Z.; Crudden, C. M.; Matsuhashi, H. J . Org. Chem.
1997, 62, 8288. (j) Armstrong, A.; Hayter, B. R. J . Chem. Soc., Chem.
Commun. 1998, 621.
I. Resolu tion s of Ra cem ic r-Tr ich lor om eth yl Al-
lylic Alcoh ols a n d Th eir Der iva tives. Our initial
(1) (a) Wipf, P. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, p 827. (b)
J ohnson, R. A.; Sharpless, K. B. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 7,
p 389. (c) Lipshutz, B. H.; Sengupta, S. In Organic Reactions; Wiley:
New York, 1992; Vol. 41, p 135.
(2) For recent reviews of kinetic resolution, see: (a) Kagan, H. B.;
Fiaud, J . C. Top. Stereochem. 1988, 18, 249. (b) Finn, M. G.; Sharpless,
K. B. In Asymmetric Synthesis; Morrison, J . D., Ed.; Academic Press:
New York, 1985; p 247.
(3) For selected examples on kinetic resolution of cyclic allylic
alcohols and/or their derivatives, see: (a) Visser, M. S.; Harrity, J . P.
A.; Hoveyda, A. H. J . Am. Chem. Soc. 1996, 118, 3779. (b) Kitamura,
M.; Kasahara, I.; Manabe, K.; Noyori, R. J . Org. Chem. 1988, 53, 708.
(c) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483. (d) Frohn, M.; Zhou, X.; Zhang, J .-R.; Tang, Y.; Shi, Y.
J . Am. Chem. Soc. 1999, 121, 7718.
(4) For selected examples on kinetic resolution of acyclic allylic
alcohols and/or their derivatives, see: (a) Martin, V. S.; Woodard, S.
S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J . Am. Chem.
Soc. 1981, 103, 6237. (b) Gao, Y.; Hanson, R. M.; Klunder, J . M.; Ko,
S. Y.; Masamune, H.; Sharpless, K. B. J . Am. Chem. Soc. 1987, 109,
5765. (c) Vedejs, E.; Chen, X. J . Am. Chem. Soc. 1996, 118, 1809. (d)
Ruble, J . C.; Latham, H. A.; Fu, G. C. J . Am. Chem. Soc. 1997, 119,
1492. (e) Burgess, K.; J ennings, L. D. J . Am. Chem. Soc. 1991, 113,
6129.
(6) (a) Fujisawa, T.; Ito, T.; Nishiura, S.; Shimizu, M. Tetrahedron
Lett. 1998, 39, 9735. (b) Hatch, C. E., III; Baum, J . S.; Takashima, T.;
Kondo, K. J . Org. Chem. 1980, 45, 3281. (c) Muljiani, Z.; Gadre, S. R.;
Modak, S.; Pathan, N.; Mitra, R. B. Tetrahedron: Asymmetry 1991, 2,
239.
(7) (a) Nicolaou, K. C.; Groneberg, R. D. J . Am. Chem. Soc. 1990,
112, 4085. (b) Bohme, A.; Gais, H. J . Tetrahedron: Asymmetry 1999,
10, 2511. (c) Corey, E. J .; Helal, C. J . Tetrahedron Lett. 1993, 34, 5227.
(d) Khrimian, A. P.; Oliver, J . E.; Waters, R. M.; Panicker, S.;
Nicholson, J . M.; Klun, J . A. Tetrahedron: Asymmetry 1996, 7, 37. (e)
Corey, E. J .; Link, J . O. Tetrahedron Lett. 1992, 33, 3431. (f) Corey, E.
J .; Link, J . O. J . Am. Chem. Soc. 1992, 114, 1906.
(8) (a) Corey, E. J .; Link, J . O.; Shao, Y. Tetrahedron Lett. 1992,
39, 3435. (b) Shono, T.; Ohmizu, H.; Kawakami, S.; Nakano, S.; Kise,
N. Tetrahedron Lett. 1981, 22, 871. (c) Ferraccioli, R.; Gallina, C.;
Giordano, C. Synthesis 1990, 327.
10.1021/jo010068c CCC: $20.00 © 2001 American Chemical Society
Published on Web 05/23/2001