7594
T. Okamoto et al. / Tetrahedron Letters 42 (2001) 7591–7594
In CH3CN solution, the CT complex (1b-TCNQ·
CH3CN) did not show the charge transfer absorption
band.15 Instead, neutral and charged species were
observed (Fig. 3). The presence of the neutral species is
in accordance with the partial charge transfer character
of 1b-TCNQ·CH3CN. The spectral assignment of 1b+
was achieved by comparison with 1b+PF6− prepared
electrochemically.
References
1. Ba¨uerle, P. In Electronic Materials: The Oligomer
Approach; Mu¨llen, K.; Wegner, G., Eds.; Wiley-VCH:
Weinheim, 1998; pp. 105–197.
2. Ishiguro, T.; Yamabe, K.; Saito, G. In Organic Supercon-
ductors; Fulde, P., Ed.; Springer: Telos, 1998; pp. 125–
220.
3. Kobayashi, H.; Kobayashi, A.; Cassoux, P. Chem. Soc.
Rev. 2000, 29, 315–324.
4. Kobayashi, H. Bull. Chem. Soc. Jpn. 1973, 46, 2945–
2949.
Similarly, the EPR spectrum of the CT complex (1b-
TCNQ·CH3CN) in CH3CN solution showed mixed sig-
nals due to the TCNQ radical anion16 and 1b+.
Identification of 1b+-signals was achieved by comparing
5. Oza, A. T. Czech. J. Phys. 1983, B33, 1148–1153.
6. Kozawa, K.; Hoshizaki, T.; Uchida, T. Bull. Chem. Soc.
1991, 64, 2039–2044.
with 1b+PF6 (g=2.0034, formally nine lines with split-
−
ting of ca 4.5 G) (Fig. 4).
7. Kistenmacher, A.; Baumgarten, M.; Enkelmann, V.;
Pawlik, J.; Mu¨llen, K. J. Org. Chem. 1994, 59, 2743–
2747.
8. Cadogan, J. I. G. Synthesis 1969, 1, 11–17.
9. Silberg, I. A.; Cristea, C. Hetreocyclic Commun. 1996, 2,
117–124.
Table 2 lists the colors and formulas (determined by
elementary analysis) of the CT-complexes or the radical
ion salts prepared by mixing with TCNQ or by electrol-
ysis in the presence of suitable electrolytes. In contrast
to 1a and 1b, the sulfur analogues did not give com-
plexes with well-definable elemental composition under
similar conditions. The conductivity for the powdered
sample of 1b-TCNQ·CH3CN showed a low conductiv-
ity (3×10−7 S cm−1). However, removing the incorpo-
rated CH3CN solvent by heating under vacuum
increased the conductivity sharply. The value in Table 2
is for the powdered sample whose elemental analysis
coincided with the formula of 1b-TCNQ. The conduc-
tivity for other salts (powdered samples) is also summa-
rized in Table 2, showing that these compounds are
semiconductors with 10−3–10−7 S cm−1.
10. Jitaru, M.; Cristea, C.; Silberg, I. A. Rev. Roum. Chim.
1999, 44, 863–866.
11. Chappell, J. S.; Bloch, A. N.; Bryden, W. A.; Maxfield,
M.; Poehler, T. O.; Cowan, D. O. J. Am. Chem. Soc.
1981, 103, 2442–2443.
12. Long, R. E.; Sparks, R. A.; Trueblood, K. N. Acta
Crystallogr. 1965, 18, 932–939.
13. Konno, M.; Ishii, T.; Saito, Y. Acta Crystallogr. 1977,
B33, 763–770.
14. Bondi, A. J. Phys. Chem. 1964, 68, 441–451.
15. Mulliken, R. S.; Person, W. B. Molecular Complexes;
John Wiley & Sons: New York, 1969; pp. 1–298.
16. Rataiczak, R. D.; Jones, M. T.; Reeder, J. R. Mol. Phys.
1985, 56, 65–77.
Compounds data for 1a and 1b are presented in the
footnote.¶
¶ Compounds data: 1a; pale yellow powder, mp>300°C, MS (EI) 288
(M+), 1H NMR (300 MHz, in DMSO-d6): l 7.93 (s, 2H), 6.72–6.67
(m, 2H), 6.54–6.50 (m, 4H), 6.40 (d, 2H, J=7.5 Hz), 6.07 (s, 1H),
5.73 (s, 1H); 13C NMR (75.45 MHz, in DMSO-d6): l 142.37,
135.35, 132.26, 127.56, 123.67, 120.09, 114.94, 113.16, 103.63, 98.79.
This compound is rather unstable under aerated conditions. 1b;
colorless plate, mp=198°C, MS (FAB) 605 (MH+), 1H NMR (300
MHz, in DMSO-d6): l 6.89–6.83 (m, 2H), 6.70–6.66 (m, 6H), 6.28
(s, 1H), 6.12 (s, 1H), 3.06 (s, 6H); 13C NMR (75.45 MHz, in
DMSO-d6): l 144.45, 137.74, 134.70, 130.37, 124.04, 120.75, 114.76,
112.01, 103.58, 97.50, 31.17.