1296
A. Pandey et al. / Bioorg. Med. Chem. Lett. 11 (2001) 1293–1296
Table 6. In vitro activity for compounds with bipiperidyl basic unit
compounds 7 (CT51819), 8, 9, 18, and 23 as free acids
and as their ethyl ester prodrugs were evaluated in
Sprague–Dawley rats. The compounds showed low oral
bioavailability (<7%) and rapid clearance at 1 mg/kg iv
and po dose. Highly active and specific GPIIb–IIIa
inhibitors have been discovered in the 6,6-mono-
azaspirocyclic series, which extends our previous work
with the 6,6-diazaspirocyclic template. However, the
poor absorption and pharmacokinetic properties of
these inhibitors preclude their ultimate utility as oral
GPIIb–IIIa antagonists.
Compds
R
ELISA
Fg/GPIIb–IIa
IC50 (mM)a
Human PRP
IC50 (mM)a
20
21
22
23
COCH2CO2H
CO(CH2)2CO2H
CO(CH2)3CO2H
CH2CO2H
2.40
100
100
2.5
50
50
0.250
0.289
aSee Table 1.
References and Notes
enhanced by the addition of b-substituents when
antagonists contain a b-amino acid functionality.8 This
has been ascribed to favorable interaction with a
hydrophobic binding site in GPIIb–IIIa. We have uti-
lized a similar approach to study the effect of b-sub-
stitution in our spirocyclic series. The b-phenyl
substituted analogue (12) resulted in 15-fold loss of
potency in PRP and 500-fold in the ELISA assay rela-
tive to the unsubstituted analogue 3 (Table 3). The
replacement of b-phenyl with the smaller CH3 residue
(11) enhanced the activity but overall b-substitution
resulted in decreased activity relative to unsubstituted
analogue 3 (Table 3). Analogues (15–17) with ether- or
amine-linked carboxylic acid groups did not display
enhanced potency, and this approach was not pursued
further (Table 4).
1. (a) Scarborough, R. M. J. Med. Chem. 2000, 43, 3453. (b)
Scarborough, R. M. Curr. Med. Chem. 1999, 6, 971.
2. Smyth, M. S.; Rose, J.; Mehrotra, M. M.; Heath, J.; Ruh-
ter, G.; Schotten, T.; Seroogy; J.; Volkots, D.; Pandey, A.;
Scarborough, R. M. Bioorg. Med. Chem. Lett. 2001, 11, 1289.
3. Claremont, D. A.; Liverton, N.; Baldwin, J. J. U.S. Patent
5,451,578, 1995; Chem. Abstr. 1995, 124, 145932.
4. Su, T.; Naughton, M. A. H.; Smyth, M. S.; Rose, J. W.;
Arfsten, A. E.; McCowan, J. R.; Jakubowski, J. A.; Wyss,
V. L.; Ruterbories, K. J.; Sall, D. J.; Scarborough, R. M. J.
Med. Chem. 1997, 40, 4308.
5. Egbertson, M. S.; Chang, C. T.-C.; Duggan, M. E.; Gould,
R. J.; Halczenko, W.; Hartman, G. D.; Laswell, W. L.; Lynch,
J. J.; Lynch, R. J.; Manno, P. D.; Naylor, A. M.; Prugh, J. D.;
Ramjit, D. R.; Sitko, G. R.; Smith, R. S.; Turchi, L. M.;
Zhang, G. J. J. Med. Chem. 1994, 37, 2537.
6. (a) Xue, C.-B.; Wityak, J.; Seilecki, T. M.; Pinto, D. J.;
Batt, D. G.; Cain, G. A.; Sworin, M.; Rockwell, A. L.;
Roderick, J. J.; Wang, S.; Orwat, M. J.; Frietze, W. E.; Bos-
trom, L. L.; Liu, J.; Higley, C. A.; Rankin, F. W.; Tobin,
A. E.; Emmett, G.; Lalka, G. K.; Sze, J. Y.; DiMeo, S. V.;
Mousa, S. A.; Thoolen, M. J.; Racanelli, A. L.; Hausner, E. A.;
Reilly, T. M.; DeGrado, W. F.; Wexler, R. R.; Olsen, R. E. J.
Med. Chem. 1997, 40, 2064. (b) Xue, C. B.; Mousa, S. A.
Drugs Future 1998, 23, 707. (c) Olsen, R. E.; Sielecki, T. M.;
Wityak, J.; Pinto, D. J.; Batt, D. G.; Frietze, W. E.; Liu, J.;
Tobin, E.; Orwat, M. J.; Di Meo, S. V.; Houghton, G. C.;
Lalka, G. K.; Mousa, S. A.; Racanelli, A. L.; Hausner, E. A.;
Kapil, R. P.; Rabel, S. R.; Thoolen, M. J.; Reilly, T. M.;
Anderson, P. S.; Wexler, R. R. J. Med. Chem. 1999, 42, 1178.
(d) Mousa, S. A.; Wityak, J. Cardiovas. Drug. Rev. 1998, 16,
48.
7. Law, D. A.; Nannizzi-Alaimo, L.; Cowan, K. J.; Prasad,
K. S.; Ramakrishnan, V.; Phillips, D. R. Thromb. Haemost.
1999, 82 (Suppl.), 345.
8. Zablocki, J. A.; Rico, J. G.; Garland, R. B.; Rogers, T. E.;
Williams, K.; Schretzman, L. A.; Rao, S. A.; Bovy, P. R.;
Tjoeng, D. E.; Adams, S. P.; Miyano, M.; Markos, C. S.;
Milton, M. N.; Knodle, S. G.; Haas, N. F.; Page, J. D.; Szal-
ony, J. A.; Salyers, A. K.; King, L. W.; Campion, J. G.; Fei-
gen, L. P. J. Med. Chem. 1995, 38, 2378.
In the final series prepared, the basic pharmacophore
group was attached to the carboxyl group of the 9-
azaspiro[5.5]undecane-3-carboxylate template. We ini-
tially focused on optimizing the distance between the
carboxylate and basic functionalities. In the pyridyl-
piperazine series, the extension with a methylene unit
(19) resulted in 10-fold loss of activity in PRP and
fibrinogen binding assay relative to 18 (Table 5). In the
bipiperidyl series the amide-linked carboxylic acid ana-
logues 20–22 (Table 6) were less potent relative to the
alkyl-linked carboxylic acid analogue 23. The alkyl-
linked analogue 23 displayed 10-fold enhancement in
activity in both the PRP and binding assay compared to
20.
We also examined the integrin specificity of all active
compounds in this series, and they were found to have
IC50 values >100 mM against the vitronectin receptor,
avb3. Thus, both direct-linked benzamidine- and pyridine-
containing analogues were all highly selective towards
GPIIb–IIIa. The pharmacokinetic properties of