10.1002/anie.201800519
Angewandte Chemie International Edition
COMMUNICATION
[3]
[4]
[5]
a) S. R. Neufeldt, M. S. Sanford, Acc. Chem. Res. 2012, 45, 936-946; b)
M. H. Perez-Temprano, J. M. Racowski, J. W. Kampf, M. S. Sanford, J.
Am. Chem. Soc. 2014, 136, 4097-4100.
linkage forming azetidines 2r-x displaying functional groups
useful for downstream synthetic modification. Azetidine 2x was
crystalline, enabling unambiguous confirmation of the absolute
configuration of the product by X-ray diffraction.17 Acyclic amines
proved to be poor substrates, requiring stoichiometric amounts of
Pd(OAc)2 to afford 2y in modest yield.18
a) K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, Angew. Chem., Int.
Ed. 2003, 42, 4077-4082. b) C. de Graaff, L. Bensch, M. J. van Lint, E.
Ruijter, R. V. A. Orru, Org. Biomol. Chem. 2015, 13, 10108-10112.
a) J. Jiao, K. Murakami, K. Itami, ACS Catal. 2016, 6, 610-633. b) R.
Narayan, S. Manna, A. Antonchick, Synlett 2015, 26, 1785-1803. c) M.
Baeten, B. U. W. Maes, Adv. Organometal. Chem. 2017, 67, 401-481.
See also ref. 1
Finally, we showed that the azetidine products serve as
substrates for a selection of simple transformations to potentially
useful products (Scheme 6). Reduction of the lactone of 2t with
LiAlH4 generated diol 7; aminolysis of the lactone gave amide 8 in
very good yield; hydrolysis of the morpholinone delivered the
corresponding hydroxy-acid 9. We also found that oxidative
decarboxylation of 9 delivered the 4-membered ring cyclic-
hemiaminal 10 as a stable, single diastereomer.
[6]
a) E. T. Nadres, O. Daugulis, J. Am. Chem. Soc. 2012, 134, 7-10; b) G.
He, Y. Zhao, S. Zhang, C. Lu, G. Chen, J. Am. Chem. Soc. 2012, 134,
3-6; c) G. He, G. Lu, Z. Guo, P. Liu, G. Chen, Nat. Chem. 2016, 8, 1131-
1136. For related studies, see: X. Ye, Z. He, T. Ahmed, K. Weise, N. G.
Akhmedov, J. L. Petersen, X. Shi, Chem. Sci. 2013, 4, 3712-3716.
a) A. McNally, B. Haffemayer, B. S. L. Collins, M. J. Gaunt, Nature 2014,
510, 129-133. b) A. P. Smalley, M. J. Gaunt, J. Am. Chem. Soc. 2015,
137, 10632-10641.
[7]
[8]
a) A. Brandi, S. Cicchi, F. M. Cordero, Chem. Rev. 2008, 108, 3988-
4035; b) B. Alcaide, P. Almendros, C. Aragoncillo, Curr. Opin. Drug
Discov. Devel. 2010, 13, 685-697. c) F. Couty, G. Evano, Synlett 2009,
3053-3064.
In conclusion, we have developed a Pd(II)-catalyzed γ-C–H
amination process in which cyclic secondary alkyl amines are
converted into highly substituted azetidines. The use of a
benziodoxole tosylate as oxidant, in combination with AgOAc,
was crucial in delivering the azetidines. We propose that the C–H
amination to azetidines is facilitated by a selective reductive
elimination that involves dissociative ionization of a tosylate and
anchimeric k2 carboxylate binding to form an octahedral
aminoalkyl-Pd(IV) complex. Nucleophillic attack of the tosylate at
the carbon atom bearing the Pd(IV) group forms the C–OTs bond,
which in turn is displaced by the proximal amino group to form the
azetidine. The reaction displays a broad tolerance to functional
groups, including structural features derived from chiral α-amino
alcohols, which leads to a diastereoselective process forming
enantiopure azetidines. We believe that the distinct reductive
elimination pathway will be applicable to other C–H
functionalization processes.
[9]
a) L. V. Desai, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126,
9542-9543. b) R. Giri, J. Liang, J.-G. Lei, J- J. Li, D.-H. Wang, X. Chen,
I. C. Naggar, C. Guo, B. M. Foxman, J.-Q. Yu, Angew. Chem. Int. Ed.
2005, 44, 7420-7424. c) S. L. Marquard, J. F. Hartwig, Angew. Chem.,
Int. Ed., 2011, 50, 7119-7123. d) A. J. Canty, Dalton Trans., 2009,
10409-10417. e) N. M. Camasso, M. H. Perez-Temprano, M. S. Sanford
J. Am. Chem. Soc. 2014, 136, 12771-12775. f) A. J. Canty, A. Ariafard,
N. M. Camasso, A. T. Higgs, B. F. Yates, M. S. Sanford, Dalton Trans.
2017, 46, 3742-3748. g) G. Yin, X. Mu, G. Liu, Acc. Chem.
Res., 2016, 49, 2413–2423. h) H. Peng, Z. Yuan, H.-Y. Wang, Y.-l. Guo
and G. Liu, Chem. Sci. 2013, 4, 3172-3178.
[10] a) Y. Xu, G. Yan, Z. Ren, G. Dong, Nat. Chem. 2015, 7, 829-834. b) R.
Zhoa, W. Lu, Org. Lett., 2017, 19, 1768-1771.
[11] G. F. Koser, R. H. Wettach, J. Org. Chem. 1980, 45, 4988-4989.
[12] a) G. Shan, X. Yang, Y. Zong, Y. Rao, Angew. Chem., Int. Ed. 2013, 52,
13606-13610; b) J. Hu, T. Lan, Y. Sun, H. Chen, J. Yao, Y. Rao, Chem.
Commun. 2015, 51, 14929-14932; c) V. V. Zhdankin, C. J. Kuehl, J. T.
Bolz, M. S. Formaneck, A. J. Simonsen Tetrahedron Lett. 1994, 35,
7323-7326; d) J. P. Brand, D. F. Gonzalez, S. Nicolai, J. Waser, Chem.
Commun. 2011, 47, 102-115.
Acknowledgements
[13] See supporting information for details. See also; a) X. Chen, C. E.
Goodhue, J.-Q. Yu, J. Am. Chem. Soc., 2006, 128, 12634–12635. b) J.-
J. Li, T.-S. Mei, J.-Q. Yu, Angew. Chem. Int. Ed. 2008, 47, 6452 –6455.
[14] Alternative mechanisms for direct C–O or C–N reductive elimination (to
3a & 2a, respectively) from int-VI were significantly higher in energy. See
supporting information, figure S2, for details.
We are grateful to EPSRC (EP/N031792/1), Royal Society for a
Wolfson Merit Award (M.J.G.), H2020 European Research
Council (M.N & C.H.), the Herchel Smith Foundation (B.G.N.C.)
and EPSRC and AstraZeneca (W.G.W) for funding. Mass
spectrometry data were acquired at the EPSRC UK National
Mass Spectrometry Facility at Swansea University.
[15] Although we were unable to isolate tosylate 5, support for the proposed
pathway is demonstrated via the preparation of the corresponding
chloride, by the same pathway, and observation of the formation of
azetidine 2a. See supporting information for details.
Keywords: keyword 1 • keyword 2 • keyword 3 • keyword 4
[16] M. S. Yusubov, T. Wirth, Org. Lett. 2005, 7, 519-521.
[1]
[2]
a) P. Thansandote, M. Lautens, Chem. Eur. J. 2009, 15, 5874-5883; b)
J. L. Jeffrey, R. Sarpong, Chem. Sci. 2013, 4, 4092-4106; c) J. Yuan, C.
Liu, A. Lei, Chem. Commun. 2015, 51, 1394-1409; d) W. A. Nack, G.
Chen, Synlett 2015, 26, 2505-2511; e) Y. Park, Y. Kim, S. Chang, Chem.
Rev. 2017, 117, 9247-9301.
[17] 2x was obtained as a single crystal, whose structure was confirmed by
X-ray diffraction, see supporting information for details.
[18] Acyclic amine (1y) formed the corresponding azetidine (2y) in 47% yield
over two steps using a stoichiometric amount of palladium.
a) K. Muniz, Angew. Chem., Int. Ed. 2009, 48, 9412-9423; b) P. Sehnal,
R. J. K. Taylor, I. J. S. Fairlamb, Chem. Rev. 2010, 110, 824-889; c) K.
M. Engle, T.-S. Mei, X. Wang, J.-Q. Yu, Angew. Chem., Int. Ed. 2011, 50,
1478-1491; d) A. J. Hickman, M. S. Sanford Nature 2012, 484, 177-185.
100 mol% Pd(OAc)2
H
N
N
PivO
Me
H
then
PivO
6, AgOAc, DCE, 80˚C, 47%
Me
Me
Me
Me
1y
2y
This article is protected by copyright. All rights reserved.