ACS Catalysis
Research Article
(39) Wang, R.; Lin, R.; Ding, Y.; Liu, J. Model Iron Phosphate
Catalysts for the Oxy-Bromination of Methane. Catal. Lett. 2014, 144,
1384−1392.
Catalytic Oxidation, College Station, TX, Springer Science and
Business Media: College Station, TX, 1993.
(60) Marchaj, A.; Kelley, D. G.; Bakac, A.; Espenson, J. H. Kinetics of
the Reactions between Alkyl Radicals and Molecular Oxygen in
Aqueous Solution. J. Phys. Chem. 1991, 95, 4440−4441.
(61) Zhdankin, V. V. Hypervalent Iodine(III) Reagents in Organic
Synthesis. Arkivoc 2009, 1−62.
(62) Zhdankin, V. V.; Stang, P. J. Chemistry of Polyvalent Iodine.
Chem. Rev. 2008, 108, 5299−5358.
(63) Koval, I. V. N-Halosuccinimides in Organic Synthesis and in
Chemistry of Natural Compounds. Russ. Russ. J. Org. Chem. 2002, 38,
301−337.
(64) Smith, G. W.; Williams, H. D. Some Reactions of Adamantane
and Adamantane Derivatives. J. Org. Chem. 1961, 26, 2207−2212.
(65) Tabushi, I.; Hamuro, J.; Oda, R. Free-Radical Substitution on
Adamantane. J. Am. Chem. Soc. 1967, 89, 7127−7129.
(66) Day, J. C.; Lindstrom, M. J.; Skell, P. S. Succinimidyl Radical as a
Chain Carrier. Mechanism of Allylic Bromination. J. Am. Chem. Soc.
1974, 96, 5616−5617.
(40) Tschuikow-Roux, E.; Paddison, S. Bond Dissociation Energies
and Radical Heats of Formation in CH3Cl, CH2Cl2, CH3Br, CH2Br2,
CH2FCl, and CHFCl2. Int. J. Chem. Kinet. 1987, 19, 15−24.
(41) Fattahi, A.; McCarthy, R. E.; Ahmad, M. R.; Kass, S. R. Why
Does Cyclopropane Have the Acidity of an Acetylene but the Bond
Energy of Methane? J. Am. Chem. Soc. 2003, 125, 11746−11750.
(42) Sze, M. C.; Riegel, H.; Schindler, H. D. Oxychlorination of
methane. U.S. Patent 4207268A, June 10, 1980.
(43) Dunn, J. L., Jr.; Posey, B., Jr. Fixed bed oxychlorination of
hydrocarbons. US2866830A, Dec 30, 1958.
(44) Breed, A.; Doherty, M. F.; Gadewar, S.; Grosso, P.; Lorkovic, I.
M.; McFarland, E. W.; Weiss, M. Natural Gas Conversion to Liquid
Fuels in a Zone Reactor. Catal. Today 2005, 106, 301−304.
(45) Blanksby, S. J.; Ellison, G. B. Bond Dissociation Energies of
Organic Molecules. Acc. Chem. Res. 2003, 36, 255−263.
(46) Periana, R. A.; Taube, D. J.; Evitt, E. R.; Loffler, D. G.;
̈
Wentrcek, P. R.; Voss, G.; Masuda, T. A Mercury-Catalyzed, High-
Yield System for the Oxidation of Methane to Methanol. Science 1993,
259, 340−343.
(47) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.;
Fujii, H. Platinum Catalysts for the High-Yield Oxidation of Methane
to a Methanol Derivative. Science 1998, 280, 560−564.
(48) Jones, C. J.; Taube, D.; Ziatdinov, V. R.; Periana, R. A.; Nielsen,
R. J.; Oxgaard, J.; Goddard, W. A., III Selective Oxidation of Methane
to Methanol Catalyzed, with C−H Activation, by Homogeneous,
Cationic Gold. Angew. Chem. 2004, 116, 4726−4729.
(67) Coseri, S. Phthalimide-N-Oxyl (PINO) Radical, a Powerful
Catalytic Agent: Its Generation and Versatility Towards Various
Organic Substrates. Catal. Rev.: Sci. Eng. 2009, 51, 218−292.
(68) Koshino, N.; Cai, Y.; Espenson, J. H. Kinetic Study of the
Phthalimide N-Oxyl (PINO) Radical in Acetic Acid. Hydrogen
Abstraction from C−H Bonds and Evaluation of O−H Bond
Dissociation Energy of N-Hydroxyphthalimide. J. Phys. Chem. A
2003, 107, 4262−4267.
(69) Hermans, I.; Jacobs, P.; Peeters, J. Autoxidation Catalysis with
N-Hydroxyimides: More-Reactive Radicals or Just More Radicals?
Phys. Chem. Chem. Phys. 2007, 9, 686−690.
(49) Periana, R. A.; Mirinov, O.; Taube, D. J.; Gamble, S. High Yield
Conversion of Methane to Methyl Bisulfate Catalyzed by Iodine
Cations. Chem. Commun. 2002, 2376−2377.
(70) Benson, S. W. III - Bond Energies. J. Chem. Educ. 1965, 42, 502.
(71) Hook, S. C. W.; Saville, B. The Trapping of Carbon Radicals.
The Competition of Oxygen and Iodine for the 1,1-Diphenylethyl
Radical. J. Chem. Soc., Perkin Trans. 2 1975, 589−593.
(72) Mezyk, S. P.; Madden, K. P. Arrhenius Parameter Determi-
nation for the Reaction of Methyl Radicals with Iodine Species in
Aqueous Solution. J. Phys. Chem. 1996, 100, 9360−9364.
(73) Zefirov, N. S.; Zhdankin, V. V.; Makhon’kova, G. V.; Dan’kov, Y.
V.; Koz’min, A. S. Oxidatively Assisted Nucleophilic Substitution of
Iodine in Alkyl Iodides by Nucleofugic Anions. J. Org. Chem. 1985, 50,
1872−1876.
(74) Davidson, R. I.; Kropp, P. J. Oxidatively Assisted Nucleophilic
Substitution/Elimination of Alkyl Iodides in Alcoholic Media. A
Further Study. J. Org. Chem. 1982, 47, 1904−1909.
(50) Gang, X.; Zhu, Y.; Birch, H.; Hjuler, H. A.; Bjerrum, N. J. Iodine
as Catalyst for the Direct Oxidation of Methane to Methyl Sulfates in
Oleum. Appl. Catal., A 2004, 261, 91−98.
́
(51) Michalkiewicz, B.; Jaronsinska, M.; Łukasiewicz, I. Kinetic Study
on Catalytic Methane Esterification in Oleum Catalyzed by Iodine.
Chem. Eng. J. 2009, 154, 156−161.
(52) Michalkiewicz, B. Methane Oxidation to Methyl Bisulfate in
Oleum at Ambient Pressure in the Presence of Iodine as a Catalyst.
Appl. Catal., A 2011, 394, 266−268.
́
(53) Jarosinska, M.; Lubkowski, K.; Sosnicki, J. G.; Michalkiewicz, B.
Application of Halogens as Catalysts of CH4 Esterification. Catal. Lett.
2008, 126, 407−412.
(54) Conley, B. L.; Tenn, W. J.; Young, K. J. H.; Ganesh, S. K.;
Meier, S. K.; Ziatdinov, V. R.; Mironov, O.; Oxgaard, J.; Gonzales, J.;
Goddard, W. A., III; Periana, R. A. Design and Study of Homogeneous
Catalysts for the Selective, Low Temperature Oxidation of Hydro-
carbons. J. Mol. Catal. A: Chem. 2006, 251, 8−23.
(55) Hashiguchi, B. G.; Konnick, M. M.; Bischof, S. M.; Gustafson, S.
J.; Devarajan, D.; Gunsalus, N.; Ess, D. H.; Periana, R. A. Main-Group
Compounds Selectively Oxidize Mixtures of Methane, Ethane, and
Propane to Alcohol Esters. Science 2014, 343, 1232−1237.
(56) Konnick, M. M.; Hashiguchi, B. G.; Devarajan, D.; Boaz, N. C.;
Gunnoe, T. B.; Groves, J. T.; Ess, D. H.; Periana, R. A. Electrophilic
C−H Functionalization of Methane, Ethane and Propane by a
Perfluoroarene Iodine(III) Complex in Carboxylic Acid Media. Angew.
Chem., Int. Ed. 2014, 53, 10490−10494.
(57) Fortman, G. C.; Boaz, N. C.; Munz, D.; Konnick, M. M.;
Periana, R. A.; Groves, J. T.; Gunnoe, T. B. Selective Monooxidation
of Light Alkanes Using Chloride and Iodate. J. Am. Chem. Soc. 2014,
136, 8393−8401.
(58) Kalman, S. E.; Munz, D.; Fortman, G. C.; Boaz, N. C.; Groves, J.
T.; Gunnoe, T. B. Partial Oxidation of Light Alkanes by Periodate and
Chloride Salts. Dalton Trans. 2015, 44, 5294−5298.
(59) Barton, D. H. R.; Martell, A. E.; Sawyer, D. T. In The Activation
of Dioxygen and Homogeneous Catalytic Oxidation, Fifth International
Symposium on the Activation of Dioxygen and Homogeneous
(75) Cambie, R. C.; Chambers, D.; Lindsay, B. G.; Rutledge, P. S.;
Woodgate, P. D. Oxidative Displacement of Hypervalent Iodine from
Alkyl Iodides. J. Chem. Soc., Perkin Trans. 1 1980, 0, 822−827.
(76) Macdonald, T. L.; Narasimhan, N.; Burka, L. T. Chemical and
Biological Oxidation of Organohalides. J. Am. Chem. Soc. 1980, 102,
7760−7765.
(77) Bering, L.; Antonchick, A. P. Selective Transition-Metal-Free
Vicinal cis-Dihydroxylation of Saturated Hydrocarbons. Chem. Sci.
2017, 8, 452−457.
(78) Rueda-Becerril, M.; Chatalova Sazepin, C.; Leung, J. C. T.;
Okbinoglu, T.; Kennepohl, P.; Paquin, J.-F.; Sammis, G. M. Fluorine
Transfer to Alkyl Radicals. J. Am. Chem. Soc. 2012, 134, 4026−4029.
(79) Fu, R.; Nielsen, R. J.; Schwartz, N. A.; Goddard, W. A., III;
Gunnoe, T. B.; Groves, J. T. DFT Mechanistic Study of Methane
Monooxygenation by Hypervalent Iodine Alkane Oxidation (HIAO)
Process. Manuscript submitted, 2018.
(80) Walling, C.; Mayahi, M. F. Some Solvent and Structural Effects
in Free Radical Chlorination. J. Am. Chem. Soc. 1959, 81, 1485−1489.
(81) Tedder, J. M. Which Factors Determine the Reactivity and
Regioselectivity of Free Radical Substitution and Addition Reactions?
Angew. Chem., Int. Ed. Engl. 1982, 21, 401−410.
(82) Chan, B.; Easton, C. J.; Radom, L. Outcome-Changing Effect of
Polarity Reversal in Hydrogen-Atom-Abstraction Reactions. J. Phys.
Chem. A 2015, 119, 3843−3847.
3148
ACS Catal. 2018, 8, 3138−3149