Reactions of Alkynes with Nickelacycles
Organometallics, Vol. 20, No. 13, 2001 2873
9.4, CHPPh), 133.69 (d, J CP ) 10.0, CHPPh), 135.42 (d, J CP
)
merization products.47 Attempted purification by crystalliza-
tion led to decomposition.
3.1, CPBz), 140.47 (d, J CP ) 12.6, CPPh2), 147.46 (d, J CP ) 21.5,
C2), 151.80 (m, C1-Ni). 31P{1H} NMR (81.0 MHz, CD2Cl2): δ
6a . 1H NMR (300 MHz, CD2Cl2): δ 1.04 ([A3BCX] m, 9H,
2
J ) 7.5, CH3PEt), 1.63 ([A3BCX] m, 3H, J ) 7.5, CH2PEt), 1.75
17.1 (d), 47.6 (d, J PP ) 336.1). FAB-MS (nitrophenyl octyl
ether, C39H35BrNiP2): m/z 705 (42, MH+), 624 (100, MH+
-
2
([A3BCX] m, 3H, J ) 7.5, CH2PEt), 3.09 (app dt, 1H, J HH
)
4
2
2J HP ) 12.0, J HP ) 2.0, CH2PPh2), 3.51 (dd, 1H, J HH ) 12.0,
2J HP ) 10.0, CH2PPh2), 3.60 (s, 3H, OMe), 6.69 (br t, J ) 7,
Hvinyl), 6.86 (d, 1H, J ) 7.5, H3), 6.90-7.84 (m, 14H, Harom),
8.15-8.24 (m, 2H, HPPh). GOESY (500 MHz, CD2Cl2): irradia-
tion at δ 1.00-1.30 gave responses from δ 1.65, 1.77, 3.64, and
7.33. 13C{1H} NMR (50.2 MHz, C6D6): δ 7.97 (CH3), 14.98 (d,
J CP ) 23.1, CH2), 27.96 (CH3Bu), 33.44 (d, J CP ) 29.8, CH2),
80.25 (CBu), 126.07 (br s, CH), 126.80 (d, J CP ) 3, CH), 127.34
(d, J CP ) 9.4, CHPPh), 128.25-132.60 (m, CH + C), 133.25 (d,
J CP ) 8.8, CHPPh), 136.32 (d, J CP ) 37.1, CPPh), 141.64 (C),
141.97 (t, J CP ) 6.3, CHvinyl), 149.05 (dd, J CP ) 38.7, 30.7, Ni-
C), 167.53 (C), 170.46 (br s, CO). 31P{1H} NMR (81.0 MHz,
Br).
Rea ction of 2a w ith P h CtCCO2Et. In a typical experi-
ment, an NMR solution of 2a (36 mg, 0.068 mmol) in C6D6
(0.6 mL) was prepared under N2 at 5 °C, and ethyl phenyl-
propynoate (0.013 mL, 0.08 mmol) was added. 31P NMR
monitoring showed the reaction to be quantitative after 10 min
at room temperature, forming only one insertion product (3a ).
1H NMR (500 MHz, C6D6): δ 0.66 (t, 3H, J HH ) 7.0, CH3), 0.70
([A3BCX] m, 9H, J ) 7.5, CH3PEt), 1.62 ([A3BCX] m, 3H, J )
7.5, CH2PEt), 1.70 ([A3BCX] m, 3H, J ) 7.5, CH2PEt), 2.79 (app
2
2
4
dt, 1H, J HH ) J HP ) 12.0, J HP ) 2.0, CH2PPh2), 3.74-3.88
2
2
(m, 2H, OCH2), 4.02 (dd, 1H, J HH ) 12.0, J HP ) 9.0, CH2-
PPh2), 6.41 (d, 1H, J HH ) 7, H3), 6.73-7.10 (m, 10H), 7.18 (t,
1H, J HH ) 7, H4or5), 7.61 (dt, 2H, J ) 2, 10, HPPh), 7.63 (dd,
2H, J ) 8, 1.7, HPh), 7.87 (d, 1H, J HH ) 7, H6), 8.08 (t, 2H,
J ) 8, HPPh). GOESY (500 MHz, C6D6): irradiation at δ 3.74-
3.88 gave responses from δ 0.66 and 7.63; irradiation at δ 0.70
gave responses from δ 1.62, 1.70, 3.55, 7.61, 7.63, and 7.87;
irradiation at δ 1.50-1.75 gave responses from δ 0.70, 7.63,
and 7.87. 13C{1H} NMR (75.4 MHz, C6D6): δ 7.56 (CH3), 13.87
(CH3), 14.60 (d, J CP ) 23, CH2), 32.96 (d, J CP ) 26.3, CH2),
2
CD2Cl2): δ 9.3 (d), 30.9 (d, J PP ) 321.8).
7a . 31P{1H} NMR (81.0 MHz, CD2Cl2): δ 13.9 (d), 33.8 (d,
2J PP ) 294.0).
Rea ction of 2a w ith HCtCCO2tBu . A solution of 2a (33
mg, 0.062 mmol) in CD2Cl2 (0.5 mL) was treated with HCt
CCO2 Bu (1 equiv). After 2 days, 31P NMR monitoring showed
t
a 5:1 mixture of the two insertion isomers 8a and 9a (>90%
total yield).
8a . 1H NMR (500 MHz, CD2Cl2): δ 0.90-1.80 (m, 15H,
t
t
4
60.15 (OCH2), 126.57, 126.79, 126.95, (CH), 127.18 (d, J CP
)
PEt3), 1.32 (s, 6H, Bu), 1.40 (s, 3H, Bu), 2.93 (dt, 1H, J HP
)
3.3, CH), 127.27 (br s, Cvinyl), 127.53 (d, J CP ) 7.7, CH), 128.80
(d, J CP ) 8.8, CHPPh), 129.87 (d, J CP ) 2.2, CHPPh), 130.04 (CH),
130.31 (d, J CP ) 2.2, CHPPh), 130.86 (d, J CP ) 4.4, CHPPh),
131.90 (dd, J CP ) 28.5, 4.4, CPPh), 132.73 (dd, J CP ) 13.0, 6.6,
CPh), 132.98 (d, J CP ) 7.7, CHPPh), 134.97 (d, J CP ) 9.9, CHPPh),
135.44 (d, J CP ) 42.6, CPPh), 142.23 (C1), 143.39 (d, J CP ) 3.3,
C2), 166.17 (dd, J CP ) 5.2, 2.5, CO), 173.91 (dd, J CP ) 30.7,
25.2, C-Ni). 31P{1H} NMR (81.0 MHz, C6D6): δ 6.9 (d), 27.5
2.0, J HH ) 2J HP ) 12.0, CH2PPh2), 3.54 (dd, 1H, J HH ) 12.0,
2J HP ) 9.2, CH2PPh2), 4.22-4.35 (m, 1H, Hvinyl), 6.62 (d, 1H,
J ) 7.3, H3), 7.08 (t, 1H, J ) 7.5, H4or5), 7.20-7.70 (m, 9H,
Harom), 8.05-8.20 (m, 3H, Harom). 13C{1H} NMR (50.2 MHz,
C6D6): δ 7.91 (CH3), 14.75 (d, J CP ) 24.2, CH2), 33.85 (d,
J CP ) 29.7, CH2), 51.20 (OMe), 126.50 (CH), 127.16 (br s, CH),
127.65 (d, J CP ) 8.8, CHPPh), 128.25-132.60 (m, CH + C),
132.99 (d, J CP ) 8.8, CHPPh), 134.19 (d, J CP ) 9.9, CHPPh),
136.00 (dd, J CP ) 36.5, 1.6, CPPh), 140.86 (t, J CP ) 6.3, CHvinyl),
141.50 (C), 150.80 (dd, J CP ) 38.3, 31.4, C-Ni), 167.53 (C),
168.69 (dd, J CP ) 4.4, 2, CO). 31P{1H} NMR (81.0 MHz, CD2-
2
2
2
(d, J PP ) 301.7).
Rea ction of 2a w ith MeCtCCO2Me. A suspension of 2a
(58 mg, 0.11 mmol) in ether (5 mL) was treated with methyl
2-butynoate (0.014 mL, 0.13 mmol) at 0 °C. After 1 h at room
temperature, the solvent was evaporated and the 31P NMR
spectrum of the yellow solid showed the reaction to be
quantitative, as only one phosphorus-containing compound
(4a ) was present. 1H NMR (500 MHz, CD2Cl2): δ 1.03 ([A3-
BCX] m, 9H, J ) 7.5, CH3PEt), 1.62 ([A3BCX] m, 3H, J ) 7.5,
2
Cl2): δ 7.7 (d), 29.4 (d, J PP ) 324.8).
9a . 31P{1H} NMR (81.0 MHz, CD2Cl2): δ 13.9 (d), 34.0 (d,
2J PP ) 297.1).
Rea ction of 2a w ith HCtCP h . Treatment of a NMR
solution of 2a (29 mg, 0.054 mmol) in C6D6 (0.5 mL) with HCt
CPh (7.2 µL, 1.1 equiv) gave a dark red solution with only one
major insertion product (12a ), as shown by 31P NMR monitor-
ing. The reaction however was not very clean, and any
attempts to purify 12a led to decomposition.
CH2PEt), 1.80 ([A3BCX] m, 3H, J ) 7.5, CH2PEt), 2.44 (dd, 3H,
2
J HP ) 2.0, 1.5, CH3), 3.02 (app dt, 1H, J HH
)
2J HP ) 12.0,
4J HP ) 2.0, CH2PPh2), 3.48 (dd, 1H, J HH ) 12.0, J HP ) 9.0,
CH2PPh2), 3.55 (s, 3H, OMe), 6.73 (d, 1H, J ) 7.5, H3), 7.16 (t,
1H, J ) 7.5, H4or5), 7.26-7.31 (m, 6H, HPPh), 7.34 (t, 1H, J )
7.5, H5or4), 7.57-7.62 (m, 3H, H6+PPh), 8.11-8.15 (m, 2H, HPPh).
GOESY (500 MHz, CD2Cl2): irradiation at δ 1.03 gave
responses from δ 1.62, 1.80, 2.44, and 7.30; irradiation at δ
2.44 gave responses from δ 1.03, 1.62, 1.80, 3.55, and 8.13.
2
2
12a . 31P{1H} NMR (81.0 MHz, CD2Cl2): δ 6.3 (d), 26.1 (d,
2J PP ) 308.5).
Rea ction of 2a w ith HCtCtBu . tert-Butylacetylene (11
µL, 0.09 mmol) was added to a solution of 2a (48 mg, 0.09
mmol) in CD2Cl2 (0.6 mL) at -78 °C. After 10 min at room
temperature, 31P NMR monitoring showed that 2a had com-
pletely reacted and that only one insertion product (11a ) was
present, together with traces of decomposition. Attempts to
isolate and purify the complex led to further decomposition.
13C{1H} NMR (75.4 MHz, C6D6): δ 8.11 (CH3), 14.83 (d, J CP
)
28.8, CH2), 24.80 (d, J CP ) 7.6, CH3), 33.18 (d, J CP ) 29.6, CH2),
50.41 (OMe), 126.15 (d, J CP ) 2.2, CH), 126.63 (br s, Cvinyl),
127.03 (d, J CP ) 3.3, CH), 127.62 (d, J CP ) 8.8, CHPPh), 128.99
(d, J CP ) 8.8, CHPPh), 129.79 (CH), 130.49 (CH), 130.59 (d,
J CP ) 2.2, CHPPh), 130.76 (d, J CP ) 4.4, CHPPh), 131.09 (dd,
J CP ) 31.0, 3.6, CPPh), 133.07 (d, J CP ) 9.9, CHPPh), 133.79 (C1),
134.05 (d, J CP ) 9.9, CHPPh), 135.60 (dd, J CP ) 37.3, 1.4, CPPh),
143.66 (d, J CP ) 1.9, C2), 162.22 (dd, J CP ) 5.2, 2.2, CO), 197.00
(dd, J CP ) 31.9, 25.2, C-Ni). 31P{1H} NMR (81.0 MHz, CD2-
Cl2): δ 9.4 (d), 29.0 (d, 2J PP ) 274.6). EI-MS (C30H37BrNiO2P2)
m/z 629 (1, M+ - H), 549 (3, M+ - Br), 471 (3), 373 (100,
C6H4(PPh2)(C(CO2Me)dCMe)).
Rea ction of 2a w ith HCtCCO2Me. Treatment of 2a (42
mg, 0.079 mmol) with 1.1 equiv of HCtCCO2Me at -78 °C in
CD2Cl2 (0.5 mL), followed by warming to room temperature,
gave 6a as the major insertion product, containing only a trace
(<8%) of the second isomer 7a , together with some cyclotri-
11a . 13C{1H} NMR (75.4 MHz, CD2Cl2): δ 8.34 (d, J CP
)
3.3, CH3), 15.96 (d, J CP ) 22.0, CH2), 30.09, 30.30, 32.26
(CH3tBu), 33.97 (d, J CP ) 31.8, CH2), 42.08 (CtBu), 51.20 (OMe),
123.70-132.80 (m, CH + C), 133.18 (t, J CP ) 7.7, CH), 133.76
(d, J CP ) 8.8, CHPPh), 136.79 (d, J CP ) 36.2, CPPh), 137.22 (d,
J CP ) 8.8, C), 138.72 (d, J CP ) 4.4, C), 143.44 (C), 170.75 (d,
J CP ) 26.4, C), 173.88 (dd, J CP ) 36.2, 24.1, C-Ni). 31P{1H}
2
NMR (81.0 MHz, CD2Cl2): δ 0.7 (d), 19.8 (d, J PP ) 319.4).
Rea ction of 2a w ith HCtCSiMe3. An NMR-scale reaction
of 2a (42 mg, 0.079 mmol) with 1 equiv of HCtCSiMe3 in CD2-
Cl2 (0.6 mL) gave only traces of an insertion product (13a ),
together with starting material and some decomposition.
Addition of an excess of alkyne led to complete decomposition.
(47) Diercks, R.; tom Dieck, H. Z. Naturforsch. 1984, B39, 180.